论文链接:https://arxiv.org/abs/1412.7062 摘要 该文将DCNN与概率模型结合进行语义分割,并指出DCNN的最后一层feature map不足以进行准确的语义分割,DCNN具有很强的空间不变性,因此比较擅长高层次的任务.该文通过在DCNN的最后一层添加一层CRF用来克服定位不准的问题.该文通过引入空洞算法来提高模型在GPU上的运行速度. 介绍 该文的一个主题是采用进行end-to-end训练的DCNN,相比传统的依赖,SIFT或者HOG等人工设计的特征会产生喜人的分…
论文链接:https://arxiv.org/pdf/1606.00915.pdf 摘要 该文主要对基于深度学习的分割任务做了三个贡献,(1)使用空洞卷积来进行上采样来进行密集的预测任务.空洞卷积可以在不增加参数量的基础上增大filter的感受野,从而可以得到更多的语义信息.(2)空洞空间金字塔池化结构(ASPP)从而以多尺寸来分割目标物体.通过不同sample rates的filters及不同大小的感受野,来获得多尺寸下的语义信息.(3)结合DCNN与概率模型提高物体的检测边界.DCNNs+C…
论文源址:https://arxiv.org/abs/1605.06409 开源代码:https://github.com/PureDiors/pytorch_RFCN 摘要 提出了基于区域的全卷积网络,用于精确高效的目标检测,相比于基于区域的检测器(Fast/Faster R-CNN),这些检测器重复的在子区域进行数百次计算,而本文在整张图像上进行共享计算.因此,本文提出了基于位置敏感分数图用于解决图像分类中的平移不变性及目标检测中的平移可变性之间的矛盾.将图像分类网络处理为全卷积网络用于目标…
论文源址:https://arxiv.org/abs/1606.02147 tensorflow github: https://github.com/kwotsin/TensorFlow-ENet 摘要 在移动端上进行实时的像素级分割十分重要.基于分割的深度神经网络中存在大量的浮点运算而且需要经过较长的时间才可以进行投入使用.该文提出的ENet目的是减少潜在的计算.ENet相比现存的分割网络,速度快18倍,参数量要少79倍,同时分割得到的准确率不有所损失,甚至有所提高. 介绍 目前,增强现实可…
论文原址:https://pdfs.semanticscholar.org/eeb7/c037e6685923c76cafc0a14c5e4b00bcf475.pdf 摘要 本文研究了利用深度神经网络及逆行自动语音识别(ASR)的语音模型,其输入是直接输入窗口形语音波(WSW).本文首先证明了,网络要实现自动化需要具有于梅尔频谱相类似的特征,(梅尔频谱是啥?参考,https://blog.csdn.net/qq_28006327/article/details/59129110),本文研究了挖掘…
论文源址:https://arxiv.org/abs/1505.04366 tensorflow代码:https://github.com/fabianbormann/Tensorflow-DeconvNet-Segmentation 基于DenconvNet的钢铁分割实验:https://github.com/fourmi1995/IronSegExperiment-DeconvNet 摘要 通过学习一个反卷积网络来实现分割算法, 本文卷积部分基于改进的VGG-16,反卷积网络部分由反卷积层和…
论文链接:https://arxiv.org/abs/1506.04924 摘要 该文提出了基于混合标签的半监督分割网络.与当前基于区域分类的单任务的分割方法不同,Decoupled 网络将分割与分类任务分离,并为每个任务单独学习一个分离的网络.分类网络识别与图片相关的标签,然后在每个识别的标签中进行二进制的分割.Decoupled网络可以基于图像级别标签学习分类网络,基于像素级别标签学习分割网络.该网络通过桥链接层获得类别明确的激活maps来减少分割的搜索空间.该文在少量训练数据的条件下仍优于…
论文源址:https://arxiv.org/abs/1703.06211 开源项目:https://github.com/msracver/Deformable-ConvNets 摘要 卷积神经网络由于其构建时固定的网络结构,因此只能处理模型的几何变换问题.本文主要介绍了两种增强CNN模型变换的模型,称为可变形卷积及可变形RoI pooling.二者都基于一种思路,通过额外增加模型的偏移及根据目标任务对此偏移量进行学习来增强空间采样位置.新模型可以取代CNN中的原有模型,可以通过反向传播算法进…
论文源址:https://arxiv.org/abs/1709.04609 摘要 该文提出了基于深度学习的实例分割框架,主要分为三步,(1)训练一个基于ResNet-101的通用模型,用于分割图像中的前景和背景.(2)将通用模型进行微调成为一个实例分割模型,借助于视频第一帧的标签文件对不同个体进行实例分割.同时,从实例分割模型中得到每一个物体的像素级score map.每张score map代表物体类别的概率,并且只和视频第一帧的ground truth 计算.(3)提出空间传播网络用于增强前面…
论文源址:https://arxiv.org/abs/1511.07122 tensorflow Github:https://github.com/ndrplz/dilation-tensorflow 摘要 该文提出了空洞卷积模型,在不降低分辨率的基础上聚合图像中不同尺寸的上下文信息,同时,空洞卷积扩大感受野的范围. 介绍 语义分割具有一定的挑战性,因为要进行像素级的分类,同时,要考虑不同尺寸大小的上下文信息的推理.通过卷积外加反向传播的学习算法,使分类的准确率得到大幅度的提升.由原始的分类到…