BZOJ2480 Spoj3105 Mod 数论 扩展BSGS】的更多相关文章

原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2480.html 题目传送门 - BZOJ2480 题意 已知数 $a,p,b$ ,求满足 $a^x≡b \pmod p $ 的最小自然数 $x$ . $a,p,b\leq 10^9$ 题解 ExBSGS模板题. UPD(2018-09-10): 详见数论总结. 传送门 - https://www.cnblogs.com/zhouzhendong/p/Number-theory-Residue-Sys…
乍一看题面:$$a^x \equiv b \ (mod \ m)$$ 是一道BSGS,但是很可惜$m$不是质数,而且$(m, a) \not= 1$,这个叫扩展BSGS[额...... 于是我们需要通过变换使得$(m, a) = 1$ 首先令$g = (a, m)$,则原式等价于:$$a ^ x + k * m = b, k \in \mathbb{Z}$$ 移项可得:$$\frac{a} {g} * a ^ {x - 1} + k * \frac {m} {g} = \frac {b} {g}…
我先转为敬? orz% miskcoo 贴板子 BZOJ 3239: Discrete Logging//2480: Spoj3105 Mod(两道题输入不同,我这里只贴了3239的代码) CODE #include<bits/stdc++.h> using namespace std; typedef long long LL; int p, a, b; int gcd(int a, int b) { return b ? gcd(b, a%b) : a; } inline int qpow…
哎呀大水题..我写了一个多小时..好没救啊.. 数论板子X合一? 注意: 本文中变量名称区分大小写. 题意: 给一个\(n\)阶递推序列\(f_k=\prod^{n}_{i=1} f_{k-i}b_i\mod P\)其中\(P=998244353\), 输入\(b_1,b_2,...,b_n\)以及已知\(f_1,f_2,...,f_{n-1}=1\), 再给定一个数\(m\)和第\(m\)项的值\(f_m\), 求出一个合法的\(f_n\)值使得按照这个值递推出来的序列满足第\(m\)项的值为…
2480: Spoj3105 Mod Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 557  Solved: 210[Submit][Status][Discuss] Description 已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x. Input     每个测试文件中最多包含100组测试数据.     每组数据中,每行包含3个正整数a,p,b.     当a=p=b=0时,表示测试数据读入完全. Output     对于…
蒟蒻哪里有什么总结,只能点击%YL% 还有这位ZigZagK大佬的blog \(\mbox{BSGS}\) 模板题:洛谷P3846 [TJOI2007]可爱的质数 给定\(a,b\)和模数\(\mbox{YL}\),求\(a^x\equiv b(\bmod\mbox{YL})\)中\(x\)的最小非负整数解.保证\(\gcd(a,\mbox{YL})=1\). 设\(k=\lceil\sqrt{\mbox{YL}}\rceil\),令\(x=ky-c\)(\(y\in[1,k],c\in[0,k…
BSGS \(BSGS\)算法又称大步小步\((Baby-Step-Giant-Step)\)算法 \(BSGS\)算法主要用于解以下同余方程 \[A^x\equiv B(mod\ p)\]其中\((A,P)=1\),即\(A\)与\(P\)互质 前置知识 根据欧拉定理\(A^{ \varphi(p)} \equiv1(mod\ p)\),所以\(A^x(mod\ p)\)的循环节为\(\varphi(p)\).也就是说如果上面的方程有解\(x\),那么肯定有\(x \in [0,\varphi…
[模板]exBSGS/Spoj3105 Mod 题目描述 已知数\(a,p,b\),求满足\(a^x\equiv b \pmod p\)的最小自然数\(x\). 输入输出格式 输入格式: 每个测试文件中最多包含\(100\)组测试数据. 每组数据中,每行包含\(3\)个正整数\(a,p,b\). 当\(a=p=b=0\)时,表示测试数据读入完全. 输出格式: 对于每组数据,输出一行. 如果无解,输出No Solution(不含引号),否则输出最小自然数解. BSGS 若\(A \perp p\)…
T2  扩展BSGS T3 快速阶乘 给定整数n,质数p和正整数c,求整数s和b,满足n! / pb = s mod pc 考虑每次取出floor(n/p)个p因子,然后将问题转化为子问题. /************************************************************** Problem: 3283 User: idy002 Language: C++ Result: Accepted Time:1704 ms Memory:12380 kb ***…
BSGS: 求合法的\(x\)使得\(a ^ x \quad mod \quad p = b\) 先暴力预处理出\(a^0,a^1,a^2.....a^{\sqrt{p}}\) 然后把这些都存在map里 : \(map[a^x] = x\) 一个合法的x满足\(x = k\sqrt{p} + l\)使得\(a^x = b\),因此可以直接枚举k,于是有: \[a^x = a^{k\sqrt{p}} \cdot a^l = b\] \[a^l = \frac{b}{a^{k\sqrt{p}}} =…
[BZOJ1467/2480]Pku3243 clever Y/Spoj3105 Mod Description 已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x. Input     每个测试文件中最多包含100组测试数据.     每组数据中,每行包含3个正整数a,p,b.     当a=p=b=0时,表示测试数据读入完全. Output     对于每组数据,输出一行.     如果无解,输出“No Solution”(不含引号),否则输出最小自然数解. Sample Inp…
扩展BSGS的板子 对于gcd(a,p)>1的情况 即扩展BSGS 把式子变成等式的形式: \( a^x+yp=b \) 设 \( g=gcd(a,p) \) 那么两边同时除以g就会变成: \( \frac{a}{g} a^{x-1}+y\frac{p}{g}=\frac{b}{g} \) 如此循环到ap互质,然后正常BSGS求即可 最后答案加上循环次数,即当前的x是经过几次减一得到的 注意有很多关于0和1的特判 以及这道题在bzoj上是可以用map的,但是poj上只能用hash map版: #…
扩展BSGS用于求解axΞb mod(n) 同余方程中gcd(a,n)≠1的情况 基本思路,将原方程转化为a与n互质的情况后再套用普通的BSGS求解即可 const int maxint=((1<<30)-1)*2+1; struct Hashmap{     static const int Ha=999917,maxe=46340;     int E,lnk[Ha],son[maxe+5],nxt[maxe+5],w[maxe+5];     int top,stk[maxe+5];  …
BSGS 给定\(a,b,p\),求\(x\)使得\(a^x\equiv b \pmod p\),或者说明不存在\(x\) 只能求\(\gcd(a,p)=1\)的情况 有一个结论:如果有解则必然存在\(x\in\left\{0\ldots p-1\right\}\)的解 设\(q=\lceil\sqrt p\rceil,x=cq-d\) \[a^{cq-d}\equiv b\pmod p\] \[a^{cq}\equiv b\times a^d\pmod p\] 先枚举\(d\in\left\{…
http://poj.org/problem?id=3243 这道题的输入数据输入后需要将a和b都%p https://blog.csdn.net/zzkksunboy/article/details/73162229 在大约sqrt( p )的复杂度求出 ( a^x ) % p = b % p中的x 扩展bsgs增加了对p不是素数的情况的处理. 扩展bsgs在处理过a,b,p之后进行bsgs的时候x处理不到num以下的部分,这部分在处理a,b,p的时候处理过了(b=1输出num)所以不用考虑.…
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwwAAAHwCAIAAACE0n9nAAAgAElEQVR4nOydfUBT1f/Hbw9202m0r8…
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1039.html 题目传送门 - 51Nod1039 题意 题解 这题我用求高次剩余的做法,要卡常数. UPD(2018-09-10): 详见数论总结. 传送门 - https://www.cnblogs.com/zhouzhendong/p/Number-theory-Residue-System.html 代码 #include <bits/stdc++.h> using namespace…
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1038.html 题目传送门 - 51Nod1038 题意 题解 在模质数意义下,求高次剩余,模板题. UPD(2018-09-10): 详见数论总结. 传送门 - https://www.cnblogs.com/zhouzhendong/p/Number-theory-Residue-System.html 代码 优化了一下代码……原来的那个在这一份后面…… #include <bits/stdc…
都是BSGS的板子题 此时 \( 0 \leq x \leq p-1 \) 设 \( m=\left \lceil \sqrt{p} \right \rceil ,x=i*m-j \)这里-的作用是避免逆元 于是可以把式子变形成这样:\( a^{im}\equiv ba^j(mod p) \) 枚举右边\( 0 \leq j <m \) ,用map或者hash以模数为下标来存每一个j 枚举左边\( 0 \leq i <m \) ,在map或者hash中查找对应的模数 #include<i…
题目链接 直接用模板好了.实在不行,反正有队友啊~~~~ #include<bits/stdc++.h> using namespace std; typedef long long LL; map<LL,LL>mp; LL qpow(LL x,LL n,LL mod) //求x^n%mod { LL ret=; ) { ) ret=ret*x%mod; x=x*x%mod; } return ret; } LL gcd(LL a, LL b) { return b? gcd(b,…
题意 给定 $a,b$ 和模数 $p$,求整数 $x$ 满足 $a^x \equiv  b(mod \ p)$,不保证 $a,p$ 互质. (好像是权限题,可见洛谷P4195 分析 之前讲过,可以通过设置 $x = km - r$ 而非 $x = km + r$ 避免求逆元,但是需要逆元存在,$a, p$ 互质的条件保证了这一点. 如果 $a, p$ 不互质怎么办呢? 我们想办法让他们变得互质. 具体地,设 $d_1 = gcd(a, p)$,如果 $d_1 \nmid b$,则原方程无解.否则…
传送门 首先要懂得 $BSGS$,$BSGS$ 可以求出关于 $Y$ 的方程 $X^Y \equiv Z (mod\ mo)$ 的最小解,其中 $gcd(X,Z)=1$ $exBSGS$ 算是 $BSGS$ 的进一步扩展,使得当 $gcd(X,Z)!=1$ 时仍然适用 先把方程转换成 $X^Y+k*mo=Z$ 的形式 因为 $Y,k$ 都是整数,所以 $Z$ 必须是 $gcd(X,mo)$ 的倍数,不然无解 所以可以把方程左右同除 $gcd(X,mo)$,变成 $X^{(Y-1)}*\frac{…
1467: Pku3243 clever Y Time Limit: 4 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 小Y发现,数学中有一个很有趣的式子: X^Y mod Z = K 给出X.Y.Z,我们都知道如何很快的计算K.但是如果给出X.Z.K,你是否知道如何快速的计算Y呢? Input 本题由多组数据(不超过20组),每组测试数据包含一行三个整数X.Z.K(0 <= X, Z, K <= 109). 输入文…
\(BSGS(baby-step-giant-step)\)算法是用来解高次同余方程的最小非负整数解的算法,即形如这个的方程: \(a^x\equiv b(mod\ p)\) 其中\(p\)为质数(其实只要(\((a,p)=1\)即可) 首先考虑暴力怎么解:由费马小定理可知\(a^{p-1}\equiv 1(mod\ p)\),也就是说如果在\([0,p-1]\)内无解的话,方程就是无解的.所以我们从小到大枚举\([0,p-1]\)中的每一个数,满足方程就结束.但是这里\(p-1\)并不一定是最…
求解A^x ≡ B mod P (P不一定是质数)的最小非负正整数解 先放几个同余定理: 一.判断如果B==1,那么x=0,算法结束 二.若gcd(A,P)不能整除 B,则 无解,算法结束 三.若gcd(A,P)!=1,令d=gcd(A,P),若d不能整除B,则无解,算法结束. 有 四.持续步骤三,直至 gcd(A,)=1 有  五.枚举 0<x<k,若有解,输出x,算法结束 六.对于x>=k, A=,B=,P= A,P 互素 , 直接用BSGS 求    * A ^ x ≡ B mod…
Clever Y Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8666   Accepted: 2155 Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, Y, Z, we all know how to figure out K fast. However, give…
扩展欧拉定理: \[ a^x \equiv a^{x\mathrm{\ mod\ }\varphi(p) + x \geq \varphi(p) ? \varphi(p) : 0}(\mathrm{\ mod\ }p)\] #include <iostream> #include <cstring> #include <cstdio> using namespace std; typedef long long ll; ll aa, cc; char bb[100000…
传送门 题目描述 已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x. 输入输出格式 输入格式: 每个测试文件中最多包含100组测试数据. 每组数据中,每行包含3个正整数a,p,b. 当a=p=b=0时,表示测试数据读入完全. 输出格式: 对于每组数据,输出一行. 如果无解,输出"No Solution"(不含引号),否则输出最小自然数解. 输入输出样例 输入样例#1: 5 58 33 2 4 3 0 0 0 输出样例#1: 9 No Solution 说明 100%的数据…
费马(Fermat)小定理 当 \(p\) 为质数,则 \(a^{p-1}\equiv 1 \mod p\) 反之,费马小定理的逆定理不成立,这样的数叫做伪质数,最小的伪质数是341. 欧拉(Euler)定理 扩展欧拉(Euler)定理 根据扩展欧拉定理,不管a和p是不是互质,都可以缩小到 \([\varphi(p),2\varphi(p)]\) 之间,然后暴力用快速幂求解.…
\(BSGS\) 求解\(a^x\equiv b\pmod p\),且\(a\)与\(p\)互质 由\(a^{φ(p)}\equiv1 \pmod p\)和\(a^0\equiv 1\pmod p\)得 \(0\simφ(p)\)为一个循环节,所以若在这个范围内不存在\(x\)满足方程,方程就无解 考虑分块,设\(x=im-k\),其中\(0\leqslant k\leqslant m\) 原方程变为\(a^{im-k}\equiv b\pmod p\) 两边同乘\(a^k\),\(a^{im}…