HDOJ 5666//快速积,推公式】的更多相关文章

题目:http://acm.hdu.edu.cn/showproblem.php?pid=5666 题意:给一条直线x+y=q,在(0,0)往x+y=q上面的整数点连线,x+y=q与x,y轴截成的三角形内部,有多少个整数点,除了直线上的点,q是指数. 思路:首先两点之间的整数点有个公式,设A(x1,y1),B(x2,y2),整数点的个数即为gcd(|x1-x2|,|y1-y2|)-1;注意到三角形是一个等腰直角三角形并且三角形在第一象限,所以假设直线x+y=q上面的一个点,C(x,q-x);那么…
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高位数字不为0. 因此,符合我们定义的最小的有趣的数是2013.除此以外,4位的有趣的数还有两个:2031和2301. 请计算恰好有n位的有趣的数的个数.由于答案可能非常大,只需要输出答案除以1000000007的余数. 输入格式 输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000). 输…
传送门 题意 利用给出的式子求\(F_{m,1}\) 分析 直接推公式(都是找规律大佬) \(n为偶数,F_{m,1}=\frac{2(2^n-1)^{m-1}}3\) \(n为奇数,F_{m,1}=F_{m-1,1}(2^n-1)-\frac{2(4^{\frac n2}-1)}3\) 抱歉啊,markdown矩阵相乘实在调不出来了,勉强看一看吧QAQ $ \left[ \begin{matrix} 2^n-1&-1 \ 0&1 \end{matrix} \right] \tag{3}…
Uint47 calculator 题目链接(点击) In the distant space, there is a technologically advanced planet. One day they provided the Earth with a code that could achieve the ultimate meaning of the universe. People were very happy, but found that this code can onl…
HDOJ(HDU).2044-2049 递推专题 点我挑战题目 HDU.2044 题意分析 先考虑递推关系:从1到第n个格子的时候由多少种走法? 如图,当n为下方格子的时候,由于只能向右走,所以有2中走法.当n为上方格子的时候,由于只能向右走,所以也有2种走法. 不妨用a[n]来表示第n个格子有几种走法,根据上述描述,不难找出递推关系,a[n] = a[n-1] + a[n-2].但是对于n<2的数字,就不适用了.也很简单,n<2的时候数一下即可,从1走到1,只有一种走法,从1走到2,有一种走…
2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n-1,从0号点出发,每次向左走或者向右走的概率是相同的,问你出发后,经过n-1个点后,恰好到达点m的概率是多少,答案是一个前缀积 题解: 讨论两个点的情况: 点0->1的期望是1 讨论三个点的情况 假设我们要到点3,我们必须经过点2,然而我们到了点2可能会再回到点1再到达点3,所以我们讨论必须经过的…
在一个D维空间,只有整点,点的每个维度的值是0~n-1 .现每秒生成D条线段,第i条线段与第i维度的轴平行.问D条线段的相交期望. 生成线段[a1,a2]的方法(假设该线段为第i条,即与第i维度的轴平行)为,i!=j时,a1[j]=a2[j],且随机取区间[0,n-1]内的整数.然后a1[i],a2[i]在保证a1[i]<a2[i]的前提下同样随机. 由于D条线段各自跟自己维度的轴平行,我们可以转换成只求第i个维度与第j个维度的相交期望,然后乘以C(2,n)就好了 显然线段[a1,a2]和线段[…
其实zoj 3415不是应该叫Yu Zhou吗...碰到ZOJ 3415之后用了第二个参考网址的方法去求通项,然后这次碰到4870不会搞.参考了chanme的,然后重新把周瑜跟排名都反复推导(不是推倒)四五次才上来写这份有抄袭嫌疑的题解... 这2题很类似,多校的rating相当于强化版,不过原理都一样.好像是可以用高斯消元做,但我不会.默默推公式了. 公式推导参考http://www.cnblogs.com/chanme/p/3861766.html#2993306 http://www.cn…
题意:给n个‘M'形,问最多能把平面分成多少区域 解法:推公式 : f(n) = 4n(4n+1)/2 - 9n + 1 = (8n+1)(n-1)+2 前面部分有可能超long long,所以要转化一下,令a = 8n+1, b = n-1,将两个数都化为a1*10^8+b1的形式,则 (a1*10^8+b1)(a2*10^8+b2) =(a1a2*10^8 + a1b2 + a2b1)*10^8 + b1b2 + 2,由于a1,a2最多2为10^4左右,中间的数就都不会超过long long…
题目是求fun(n)的值 fun(n)= Gcd(3)+Gcd(4)+…+Gcd(i)+…+Gcd(n).Gcd(n)=gcd(C[n][1],C[n][2],……,C[n][n-1])C[n][k] means the number of way to choose k things from n things. n最大一百万,马上反映到可能是递推打表. 首先肯定是推公式了,fun(n)其实就是Gcd(n)的一个前n项和,没意义,直接看Gcd(n),把前几项列出来,发现公式是Gcd(n) =…