Numpy库的学习(五)】的更多相关文章

今天我们继续学习一下Numpy库的学习 废话不多说 ,开始讲 比如我们现在想创建一个0-14这样一个15位的数组 可以直接写,但是很麻烦,Numpy中就给我们了一个方便创建的方法 numpy中有一个arange函数 import numpy as np print(np.arange(15)) a = np.arange(15).reshape(3,5) a 运行这段代码以后,可以得到如下结果 这里我们可以看到,我先打印了一下,np.arange(15)这个结果,产生一个0-14的15位数组 然…
今天继续学习一下Numpy库,废话不多说,整起走 先说下Numpy中,经常会犯错的地方,就是数据的复制 这个问题不仅仅是在numpy中有,其他地方也同样会出现 import numpy as np a = np.arange(12) b = a print(b is a) b.shape = 3,4 print(a.shape) print(id(a)) print(id(b)) 先看看这段代码,我们随便建立了一个numpy数组 然后我想把a这个值,赋值给b,很简单的操作,b = a 那么我们打…
我们今天继续学习一下Numpy库 接着前面几次讲的,Numpy中还有一些标准运算 a = np.arange(3) print(a) print(np.exp(a)) print(np.sqrt(a)) exp表示求e的幂次方,比如上面看到的,e的0次方为1,e的2次方,2.7几,以此类推 我们可以看到,exp就是求e的多少次方 而sqrt则表示根号,也就是进行开方运算 我们可以得到,0的开方为0,1 的开方为1,2的开方为1.4 看下面的代码: a = np.floor(10*np.rando…
今天来继续学习一下Numpy库的使用 接着昨天的内容继续 在Numpy中,我们如果想要进行一个判断使用“==” 我们来看下面的代码 vector = np.array([5,10,15,20,25]) vector == 10 我们来看看上面的代码,这段代码表示的是什么意思呢? vector == 10 表示的是,当前的array当中所有的元素都会进行判断 是否等于10 我们可以看到,运行结果为上图所示,只有第2个值为True 那么这里可以看到是对每一个值都进行了判断 那么矩阵操作也是一样的 m…
今天来学习一下Python库中,支持高级大量的维度数组与矩阵运算的神奇的Numpy库 Numpy同时也对数组运算提供大量的数学函数,对于大量计算运行效率极好 是大量机器学习框架的基础库 废话不多说,直接开整 Numpy中最核心的结构就是ndarray数组 Numpy中定义的最重要的对象是成为ndarray的N维数组类型 它描述相同类型的元素集合.可以使用基于零的索引访问集合中的项目.大部分的数组操作仅仅是修改元数据部分,而不改变其底层的实际数据. 数组的维数称为秩,简单来说就是如果你需要获取数组…
一.ndarray 1.numpy 库处理的最基础数据类型是由同种元素构成的多维数组(ndarray),简称“数组”. 2.ndarray是一个多维数组的对象,ndarray数组一般要求所有元素类型相同,数组下标从0开始. 3.在numpy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank). 4.从ndarray对象提取任何元素(通过切片)由一个数组标量类型的python对象表示,数组切片得到的是原始数组的视图,所有修改都会直接反映到源数组.如果需要得到的ndarray…
Numpy数据存取 •NumPy的随机数函数 a = np.random.rand(1,2,3) print(a) #[[[0.03339719 0.72784732 0.47527802] # [0.6456671 0.65639799 0.01300073]]] a = np.random.randn(1,2,3) print(a) #[[[ 0.59115211 -0.40289048 1.34532466] # [-0.04616715 -0.64066822 -1.09722129]]…
1.创建 array(序列类型).asarray.arange.ones.ones_like.zeros.zeros_like.empty.empty_like.eye.identity 2.运算 两个大小相等的数组进行算术运算都会将运算应用到元素级:数组与标量之间的运算也会作用到各个元素. 例如:a=array([1,2,3]),b=array([2,3,4]),a+b=array([3,5,7]),a+1=array([2,3,4]) 不同大小数组之间的运算叫做广播. 3.索引和切片 类似列…
今天我们来学习一下Pandas库,前面我们讲了Numpy库的学习 接下来我们学习一下比较重要的库Pandas库,这个库比Numpy库还重要 Pandas库是在Numpy库上进行了封装,相当于高级Numpy库 在数据处理方面,运用Pandas库,也是非常多的,废话不多说 先说第一个函数,read_csv,读取CSV数据文件 import pandas food = pandas.read_csv("food_info.csv") print(type(food)) print(food.…
Numpy库 numpy:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成,并可与C++/Fortran语言无缝结合.树莓派Python v3默认安装已经包含了numpy. ①    导入模块 >>> import numpy as np ②    生成数组 >>> np.array([1, 2, 3, 4, 5])        # 把列表转换为数组 array([1, 2, 3, 4, 5]) >>…