一.Spark心跳概述 前面两节中介绍了Spark RPC的基本知识,以及深入剖析了Spark RPC中一些源码的实现流程. 具体可以看这里: Spark RPC框架源码分析(二)运行时序 Spark RPC框架源码分析(一)简述 这一节我们来看看一个Spark RPC中的运用实例--Spark的心跳机制.当然这次主要还是从代码的角度来看. 我们首先要知道Spark的心跳有什么用.心跳是分布式技术的基础,我们知道在Spark中,是有一个Master和众多的Worker,那么Master怎么知道每…
Spark RPC系列: Spark RPC框架源码分析(一)运行时序 Spark RPC框架源码分析(二)运行时序 Spark RPC框架源码分析(三)运行时序 一. Spark rpc框架概述 Spark是最近几年已经算是最为成功的大数据计算框架,那么这次我们就来介绍它内部的一个小点,Spark RPC框架. 在介绍之前,我们需要先说明什么是RPC,引用百度百科: RPC(Remote Procedure Call)-远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层…
前情提要: Spark RPC框架源码分析(一)简述 一. Spark RPC概述 上一篇我们已经说明了Spark RPC框架的一个简单例子,Spark RPC相关的两个编程模型,Actor模型和Reactor模型以及一些常用的类.这一篇我们还是用上一篇的例子,从代码的角度讲述Spark RPC的运行时序,从而揭露Spark RPC框架的运行原理.我们主要将分成两部分来讲,分别从服务端的角度和客户端的角度深度解析. 不过源码解析部分都是比较枯燥的,Spark RPC这里也是一样,其中很多东西都是…
一.AOP分析 问题1:AOP是什么? Aspect Oriented Programming 面向切面编程,在不改变类的代码的情况下,对类方法进行功能增强. 问题2:我们需要做什么? 在我们的框架中要向使用用户提供AOP功能,让他们可以通过AOP技术实现对类方法进行功能增强. 从"Aspect Oriented Programming 面向切面编程,在不改变类的代码的情况下,对类方法进行功能增强"这句话我们能得到下面的这些信息: 二.AOP概念学习 我们先来看一下下面的这张图 说明:…
1. ArrayList概述: ArrayList是List接口的可变数组的实现.实现了所有可选列表操作,并允许包括 null 在内的所有元素.除了实现 List 接口外,此类还提供一些方法来操作内部用来存储列表的数组的大小.   每个ArrayList实例都有一个容量,该容量是指用来存储列表元素的数组的大小.它总是至少等于列表的大小.随着向ArrayList中不断添加元素,其容量也自动增长.自动增长会带来数据向新数组的重新拷贝,因此,如果可预知数据量的多少,可在构造ArrayList时指定其容…
本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继续分析TaskScheduler和SchedulerBackend. 一.TaskScheduler和SchedulerBackend类结构和继承关系 之所以把这部分放在最前面,是想让大家在阅读后续文章时对TaskScheduler和SchedulerBackend是什么有一个概念.因为有些方法是从…
继续前一篇的内容.前一篇内容为: Spark中Client源码分析(一)http://www.cnblogs.com/yourarebest/p/5313006.html DriverClient中的代码比较简单,它只有一个main函数,同时,和AppClient一样,它也有一个ClientEndpoint,只是两者的用途不一样. 1.Client Client中唯一的main方法如下: def main(args: Array[String]) { if (!sys.props.contain…
Master作为集群的Manager,对于集群的健壮运行发挥着十分重要的作用.下面,我们一起了解一下Master是听从Client(Leader)的号召,如何管理好Worker的吧. 1.家当(静态属性) 1.设置一个守护单线程的消息发送器, private val forwardMessageThread = ThreadUtils.newDaemonSingleThreadScheduledExecutor("master-forward-message-thread") 2.根据…
本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Action操作之前一系列Transform操作的关联关系,生成一个DAG,在后续的操作中,对DAG进行Stage划分,生成Task并最终运行.整个过程如下图所示,DAGScheduler用于对Application进行分析,然后根据各RDD之间的依赖关系划分Stage,根据这些划分好的Stage,对应…
欢迎转载,转载请注明出处,徽沪一郎. 楔子 Spark计算速度远胜于Hadoop的原因之一就在于中间结果是缓存在内存而不是直接写入到disk,本文尝试分析Spark中存储子系统的构成,并以数据写入和数据读取为例,讲述清楚存储子系统中各部件的交互关系. 存储子系统概览 上图是Spark存储子系统中几个主要模块的关系示意图,现简要说明如下 CacheManager  RDD在进行计算的时候,通过CacheManager来获取数据,并通过CacheManager来存储计算结果 BlockManager…