[Luogu 1730]最小密度路径】的更多相关文章

Description 给出一张有N个点M条边的加权有向无环图,接下来有Q个询问,每个询问包括2个节点X和Y,要求算出从X到Y的一条路径,使得密度最小(密度的定义为,路径上边的权值和除以边的数量). Input 第一行包括2个整数N和M. 以下M行,每行三个数字A.B.W,表示从A到B有一条权值为W的有向边. 再下一行有一个整数Q. 以下Q行,每行一个询问X和Y,如题意所诉. Output 对于每个询问输出一行,表示该询问的最小密度路径的密度(保留3位小数),如果不存在这么一条路径输出“OMG!…
P1730 最小密度路径 题面 题目描述 给出一张有 \(N\) 个点 \(M\) 条边的加权有向无环图,接下来有 \(Q\) 个询问,每个询问包括 \(2\) 个节点 \(X\) 和 \(Y\) ,要求算出从 \(X\) 到 \(Y\) 的一条路径,使得密度最小(密度的定义为,路径上边的权值和除以边的数量). 输入输出格式 输入格式: 第一行包括 \(2\) 个整数 \(N\) 和 \(M\) . 以下 \(M\) 行,每行三个数字 \(A\) . \(B\) . \(W\) ,表示从 \(A…
类型:Floyd 传送门:>Here< 题意:定义一条路径密度 = 该路径长度 / 边数.给出一张$DAG$,现有$Q$次询问,每次给出$X,Y$,问$X,Y$的最小密度路径($N \leq 50$) 解题思路 由于$N$非常小,考虑$Floyd$求最短路.但是这题与$Floyd$的不同就在于需要除以边数 可以枚举边的数量.在边的数量$k$确定时,只需要求得恰好经过$k$条边的最短路即可.有没有联想到矩阵乘法……但是这道题是要求先预处理之后询问,因此矩阵乘法的$log \ M$优化就没有意义了…
题目大意:给定一个 N 个点,M 条边的有向图,现有 Q 个询问,每次询问 X 到 Y 的最小密度路径是多少.最小密度路径的定义是路径长度除以路径边数. 题解:利用矩阵乘法,可以预处理出从 X 到 Y 恰好经过 K 条边的最短路是多少.对于每次询问,直接处理处理即可,时间复杂度为 \(O(n^4)\). 注意:恰好经过 K 条边的最短路不能将 G[i][i] 初始化成 0,因为边数有实际意义,若这样初始化意味着有自环出现.至少经过 K 条边的同理,也不能这样初始化. 代码如下 #include…
题意 题目链接 Sol zz floyd. 很显然的一个dp方程\(f[i][j][k][l]\)表示从\(i\)到\(j\)经过了\(k\)条边的最小权值 可以证明最优路径的长度一定\(\leqslant N\) 然后一波\(n^4\) dp就完了 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int INF = 1e9 + 10; inline in…
题目传送门; 首先理解题目,究其本质就是一个最短路问题,而且数据范围贼水,用floyd完全没问题,但是题目有变化,要求出路径边权值与边数之比,这里就可以考虑在把floyd中的二维数组变为三维,f[ i ][ j ][ l ]表示从 i 到 j 经过 l 条边的情况,而且因为是有向图,所以从一点到达另一点经过的边数最多为n-1条(除非数据有问题),做完floyd之后就从1-n-1枚举边数,然后比较得出ans即可,不过要注意,对于f[ s ][ t ][ l ],某些 l 的情况是不存在的,所以别忘…
Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相交)的集合.如果V中每个顶点恰好在P的一条路上,则称P是G的一个路径覆盖.P中路径可以从V的任何一个顶点开始,长度也是任意的,特别地,可以为0.G的最小路径覆盖是G的所含路径条数最少的路径覆盖. 设计一个有效算法求一个有向无环图G的最小路径覆盖. Input 第1行有2个正整数n和m.n是给定有向无…
题目描述 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0.G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖.设计一个有效算法求一个有向无环图G 的最小路径覆盖. 输入输出格式 输入格式: 件第1 行有2个正整数n和m.n是给定有向无环图G 的顶点数,m是G 的边数.接下来的m行,每行有2 个正整数i和j,表示一条有向边(i,j)…
codevs 1001 舒适的路线 2006年  时间限制: 2 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N(1<N≤500)个景点(编号为1,2,3,-,N),这些景点被M(0<M≤5000)条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路.也许是为了保护该地的旅游资源,Z小镇有个奇怪的规定,就是对于一条给定的公路Ri,任何在该公路…
输入一个n×m网格图,每个结点的值为0-9,可以从任意点出发不超过k次,走完每个点且仅访问每个结点一次,问最终的能量最大值.不可全部走完的情况输出-1. 初始能量为0. 而结点(x,y)可以跳跃到结点(x,y+dy)或(x+dx,y).消耗能量为跳跃前后结点的曼哈顿距离 - 1 .若跳跃前后的结点的值相等,能量加上那个值. 具体建图可以参考这里http://blog.sina.com.cn/s/blog_6bddecdc0102uy9g.html 最小K路径覆盖其实在之前是见过的打过的,不过这次…