hbase coprocessor 二级索引】的更多相关文章

Coprocessor方式二级索引 1. Coprocessor提供了一种机制可以让开发者直接在RegionServer上运行自定义代码来管理数据.通常我们使用get或者scan来从Hbase中获取数据,使用Filter过滤掉不需要的部分,最后在获得的数据上执行业务逻辑.但是当数据量非常大的时候,这样的方式就会在网络层面上遇到瓶颈.客户端也需要强大的计算能力和足够大的内存来处理这么多的数据,客户端的压力就会大大增加.但是如果使用Coprocessor,就可以将业务代码封装,并在RegionSer…
一:问题由来 1.举例 有A列与B列,分别是年龄与姓名. 如果想通过年龄查询姓名. 正常的检索是通过rowkey进行检索. 根据年龄查询rowkey,然后根据rowkey进行查找姓名. 这样的效率不高,因为要两次scan. 2.建议有一张索引表. 二:HBase的二级索引 1.讲解 rowkey是uid+ts 11111_20161126111111: 这个rowkey方便查询某一uid的某一个时间段内的数据 问题: 查询某一时间段内所有用户的数据:按照时间 索引表 rowkey:ts+uid…
HBase的一级索引就是rowkey,我们仅仅能通过rowkey进行检索. 假设我们相对hbase里面列族的列列进行一些组合查询.就须要採用HBase的二级索引方案来进行多条件的查询. 常见的二级索引方案有下面几种: 1.MapReduce方案 2.ITHBASE方案 3.IHBASE方案 4.Coprocessor方案 5.Solr+hbase方案 MapReduce方案 IndexBuilder:利用MR的方式构建Index 长处:并发批量构建Index 缺点:不能实时构建Index 举例:…
一:HBase的二级索引 1.讲解 uid+ts 11111_20161126111111:查询某一uid的某一个时间段内的数据 查询某一时间段内所有用户的数据:按照时间 索引表 rowkey:ts+uid 20161126111111-111111 info:uid uid+ts 检索流程: 从索引表中根据时间段来查询源表rowkey 根据rowkey来查询源表 二:phoenix的安装 1.上传源文件包 2.解压到modules文件夹下 tar -zxvf phoenix-4.2.2-src…
文章来源:http://www.open-open.com/lib/view/open1421501717312.html 实现目的: 由于hbase基于行健有序存储,在查询时使用行健十分高效,然后想要实现关系型数据库那样可以随意组合的多条件查询.查询总记录数.分页等就比较麻烦了.想要实现这样的功能,我们可以采用两种方法: 使用hbase提供的filter, 自己实现二级索引,通过二级索引 查询多符合条件的行健,然后再查询hbase. 第一种方法不多说了,使用起来很方便,但是局限性也很大,hba…
为什么需要Secondary Index 对于Hbase而言,如果想精确地定位到某行记录,唯一的办法是通过rowkey来查询.如果不通过rowkey来查找数据,就必须逐行地比较每一列的值,即全表扫瞄.对于较大的表,全表扫瞄的代价是不可接受的. 但是,很多情况下,需要从多个角度查询数据.例如,在定位某个人的时候,可以通过姓名.身份证号.学籍号等不同的角度来查询,要想把这么多角度的数据都放到rowkey中几乎不可能(业务的灵活性不允许,对rowkey长度的要求也不允许). 所以,需要secondar…
使用HBase存储中国好声音数据的案例,业务描述如下: 为了能高效的查询到我们需要的数据,我们在RowKey的设计上下了不少功夫,因为过滤RowKey或者根据RowKey查询数据的效率是最高的,我们的RowKey的设计是:UserID + CreateTime + FileID,那么我们在HBase中的数据格式如下: 每一行数据中包含两个Column:f:c和f:n 我们在查询的时候还是用了SingleColumnValueFilter这个Filter来过滤单个的Column的Value的值,我…
关注公众号:大数据技术派,回复"资料",领取1024G资料. 1 为什么需要二级索引 HBase的一级索引就是rowkey,我们仅仅能通过rowkey进行检索.假设我们相对Hbase里面列族的列列进行一些组合查询,就只能全表扫描了.表如果较大的话,代价是不可接受的,所以要提出二级索引的方案. 二级索引的思想:简单理解就是,根据列族的列的值,查出rowkey,再按照rowkey就能很快从hbase查询出数据,我们需要构建出根据列族的列的值,很快查出rowkey的方案. 2 常见的二级索引…
1.简介 MapReduce计算框架是二代hadoop的YARN一部分,能够提供大数据量的平行批处理.MR只提供了基本的计算方法,之所以能够使用在不用的数据格式上包括HBase表上是因为特定格式上的数据读取和写入都实现了各自的inputformat和outputformat,这样MR就通过这两个接口屏蔽了各个数据源的产异性,统一计算框架.本文主要介绍如何让HBase表作为MR计算框架的输入和输出源,并通过实现一个简历二级索引的小例子来介绍. 2. HBase与MR关系 HBase和MapRedu…
二级索引与索引Join是Online业务系统要求存储引擎提供的基本特性.RDBMS支持得比较好,NOSQL阵营也在摸索着符合自身特点的最佳解决方案. 这篇文章会以HBase做为对象来探讨如何基于Hbase构建二级索引与实现索引join.文末同时会列出目前已知的包括0.19.3版secondary index,?ITHbase, Facebook和官方Coprocessor方案的介绍. 理论目标 在HBase中实现二级索引与索引Join需要考虑三个目标: 1,高性能的范围检索. 2,数据的低冗余(…