**本文恐怕不是完全的标题党** 视频多目标跟踪需要解决的关键点是前后两帧之间的Target Association,这是最难的环节(没有之一).第T帧检测到M个目标,第T+S(S>=1)帧检测到N个目标,怎样将这M*N对目标正确地关联起来,是“跟踪算法”最难的环节.(注意这里提到的是多目标,单目标跟踪很简单) 通常的跟踪方式是根据目标中心点距离.IOU(目标区域的交并比)等这些纯物理指标进行关联,中心点距离越小.IOU越大(区域重合面积越大),则认为是同一个目标.这种方式优点就是简单.匹配速度…
算法不是通用的,基于深度学习的应用系统不但做不到通用,即使对于同一类业务场景,还需要为每个场景做定制.特殊处理,这样才能有可能到达实用标准.这种局限性在计算机视觉领域的应用中表现得尤其突出,本文介绍基于深度学习的交通行业视频结构化类应用在实际使用场景中遇到的一些问题.计算机视觉处理的目标是图片,因此图片直接影响最终算法的效果,实际场景中碰到的问题基本都是由于各种原因导致视频图片发生变化最后影响系统的使用效果. 露天天气环境影响 由于天气变化.光照季节性变化等各种原因,视频画面经常出现干扰性噪声,…
本文介绍如何将基于深度学习的目标检测算法应用到具体的项目开发中,体现深度学习技术在实际生产中的价值,算是AI算法的一个落地实现.本文算法部分可以参见前面几篇博客: [AI开发]Python+Tensorflow打造自己的计算机视觉API服务 [AI开发]基于深度学习的视频多目标跟踪实现 [AI开发]视频多目标跟踪高级版(离自动驾驶又‘近’了一点点) [AI开发]centOS7.5上基于keras/tensorflow深度学习环境搭建 背景 交通领域是深度学习技术可以发挥强大作用的一个领域.道路交…
这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).windows上该环境的搭建 :) 前面三篇博客代码实现均基于该环境(开发或者测试过): [AI开发]Python+Tensorflow打造自己的计算机视觉API服务 [AI开发]基于深度学习的视频多目标跟踪实现 [AI开发]视频多目标跟踪高级版 运行环境 1) centOS 7.5 ,不要安装GUI桌面:…
作为战略新兴产业,人工智能已经开始广泛应用于多个领域.近几年,科技公司.互联网公司等各领域的企业纷纷布局自动驾驶.那么,自动驾驶技术究竟发展得如何了?日前,华为云携手上海交通大学创新中心举办的华为云人工智能大赛·无人车挑战杯(以下简称无人车挑战杯大赛)正在如火如荼地进行中. 此次大赛的难点之一在于无人车检测算法的开发.在开发过程中,参赛者需要自行采集交通灯.自动泊车位等图片数据,然后进行数据的预处理.标注,最后完成检测算法的开发并部署至无人车. 面对上述难点,华为云为选手提供了面向开发者的华为云…
欢迎添加华为云小助手微信(微信号:HWCloud002 或 HWCloud003),输入关键字"加群",加入华为云线上技术讨论群:输入关键字"最新活动",获取华为云最新特惠促销.华为云诸多技术大咖.特惠活动等你来撩 作为战略新兴产业,人工智能已经开始广泛应用于多个领域.近几年,科技公司.互联网公司等各领域的企业纷纷布局自动驾驶.那么,自动驾驶技术究竟发展得如何了?日前,华为云携手上海交通大学创新中心举办的华为云人工智能大赛·无人车挑战杯(以下简称无人车挑战杯大赛)正…
如今自动驾驶在全球范围内的发展势头愈发“凶猛”,该领域人才也一度被视为“香饽饽”. 即使在美国,自动驾驶工程师的起薪也已经突破了25万美元,我国‘“开价”之高更是令人咋舌. 人才.人才.还是人才!重要的事情说三遍! 我们深知,少数的几位技术大咖根本无法支撑自动驾驶技术的持续性发展,更多的工程师需要加入到自动驾驶的研发队伍中,可是具备丰富经验的专家又很忙,人才培训怎么办? 对此,Udacity 团队的David Silver深有感触! 作为Udacity 团队中自动驾驶课程培训的leader,Da…
原文地址:https://blog.csdn.net/jinzhuojun/article/details/80210180,转载主要方便随时查阅,如有版权要求,请及时联系. 我们知道,自动驾驶在学界其实已经是个很老的topic了.而这几年,伴随着以深度学习为主力的第三次AI浪潮,大家似乎看到了自动驾驶商业化的重大机会,于是无论是学界还是工业界都开始将注意力转向该领域.放眼望去,满大街似乎都在搞自动驾驶.前段时间,百度又发布了自动驾驶平台Apollo的2.5版本.要想搭个环境玩一下的话,其实官方…
视频结构化的定义 利用深度学习技术实时分析视频中有价值的内容,并输出结构化数据.相比数据库中每条结构化数据记录,视频.图片.音频等属于非结构化数据,计算机程序不能直接识别非结构化数据,因此需要先将这些数据转换成有结构格式,用于后续计算机程序分析.视频结构化最常见的流程为:目标检测.目标分类(属性识别).目标跟踪.目标行为分析.最后的目标行为分析严格来讲不属于视频结构化的范畴,可以算作前面每个环节结果的应用.由于现实生产过程中,一个完整的应用系统总会存在“目标行为分析”这个过程(否则光得到基础数据…
在今天召开的 Connect(); 2017 开发者大会上,微软宣布了 Azure.数据.AI 开发工具的内容.这是第一天的 Connect(); 2017 的主题演讲. 在开场视频中霍金又来了.你记得这个Intel为他开发的系统使用了C#,而且是开源的,在Github上地址:https://github.com/intel/acat 另外API Gateway Ocelot https://github.com/TomPallister/Ocelot 也出现在视频中: ​​​​ 开场视频过后红…