扩展手写数字识别应用 识别并计算简单手写数学表达式 主要知识点 了解MNIST数据集 了解如何扩展数据集 实现手写算式计算器 简介 本文将介绍一例支持识别手写数学表达式并对其进行计算的人工智能应用的开发案例.本文的应用是基于前文"手写识别应用入门"中的基础应用进行扩展实现的.本文将通过这一案例,展示基本的数据整理和扩展人工智能模型的过程,以及介绍如何利用手写输入的特性来简化字符分割的过程.并且本文将演示如何利用Visual Studio Tools for AI进行批量推理,以便利用底…
AI应用开发实战 - 手写识别应用入门 手写体识别的应用已经非常流行了,如输入法,图片中的文字识别等.但对于大多数开发人员来说,如何实现这样的一个应用,还是会感觉无从下手.本文从简单的MNIST训练出来的模型开始,和大家一起入门手写体识别. 在本教程结束后,会得到一个能用的AI应用,也许是你的第一个AI应用.虽然离实际使用还有较大的距离(具体差距在文章后面会分析),但会让你对AI应用有一个初步的认识,有能力逐步搭建出能够实际应用的模型. 建议和反馈,请发送到 https://github.com…
AI应用开发实战 - 定制化视觉服务的使用 本篇教程的目标是学会使用定制化视觉服务,并能在UWP应用中集成定制化视觉服务模型. 前一篇:AI应用开发实战 - 手写识别应用入门 建议和反馈,请发送到 https://github.com/Microsoft/vs-tools-for-ai/issues 联系我们 OpenmindChina@microsoft.com 零.定制化视觉服务简介 有的时候,在构建应用的过程中,在缺少强大计算资源与高性能算法的情况下,我们不一定需要自己从零开始训练模型.我…
AI应用开发实战 出发点 目前,人工智能在语音.文字.图像的识别与解析领域带来了跨越式的发展,各种框架.算法如雨后春笋一般,互联网上随处可见与机器学习有关的学习资源,各大mooc平台.博客.公开课都推出了自己的学习资料. 在当前学习资料十分丰富的这个环境下,本教程从上手的角度,让大家能够真正动手开始进行AI的开发,提高大家的开发生产力水平,而不是简单地学习人工智能的底层算法和理论却迟迟不动手. 建议和反馈,请发送到 https://github.com/Microsoft/vs-tools-fo…
AI应用开发实战 - 从零开始搭建macOS开发环境 本视频配套的视频教程请访问:https://www.bilibili.com/video/av24368929/ 建议和反馈,请发送到 https://github.com/Microsoft/vs-tools-for-ai/issues 联系我们 OpenmindChina@microsoft.com 零.前提条件 一台能联网的电脑,使用macOS操作系统 请确保鼠标.键盘.显示器都是好的 一.工具介绍 Viusal Studio code…
AI应用开发实战 - 从零开始配置环境 与本篇配套的视频教程请访问:https://www.bilibili.com/video/av24421492/ 建议和反馈,请发送到 https://github.com/Microsoft/vs-tools-for-ai/issues 联系我们 OpenmindChina@microsoft.com 零.前提条件 一台能联网的电脑,使用win10 64位操作系统 请确保鼠标.键盘.显示器都是好的 一.Windows下开发环境搭建 本教材主要参考了如下资…
  AI应用开发实战 - 从零开始配置环境 与本篇配套的视频教程请访问:https://www.bilibili.com/video/av24421492/ 建议和反馈,请发送到https://github.com/Microsoft/vs-tools-for-ai/issues 联系我们OpenmindChina@microsoft.com 零.前提条件 一台能联网的电脑,使用win10 64位操作系统 请确保鼠标.键盘.显示器都是好的 一.Windows下开发环境搭建 本教材主要参考了如下资…
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字识别的计算机视觉问题,评价我们搭建的模型的标准是它是否能准确的对手写数字图片进行识别. 其具体的过程是:先使用已经提供的训练数据对搭建好的神经网络模型进行训练并完成参数优化,然后使用优化好的模型对测试数据进行预测,对比预测值和真实值之间的损失值,同时计算出结果预测的准确率.在将要搭建的模型中会使用到…
1.导包 import numpy as np import operator from os import listdir from sklearn.neighbors import KNeighborsClassifier as KNN %config ZMQInteractiveShell.ast_node_interactivity='all' 2.定义将图像转换成向量的函数 """ 函数说明:将32x32的二进制图像转换成1x1024向量 Parameters: f…
记得前面(忘了是哪天写的,反正是前些天,请用力点击这里观看)老周讲了一个14393新增的控件,可以很轻松地结合InkCanvas来完成涂鸦.其实,InkCanvas除了涂鸦外,另一个大用途是墨迹识别,就是手写识别. 识别功能早在Win 8 App的API中就有了,到了UWP,同样使用,这叫传承,一路学过来,都是一个体系的,我不明白为什么某些人一遇到升级就说SDK变化太大,适应不了.我是不明白了,有什么适应不了的,该不会是你笨吧,或者学习方法不对.反正老周在以前的博客中都说过了,学习要学活,不要把…