ROC曲线的概念和意义】的更多相关文章

ROC曲线 受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve).得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已.接受者操作特性曲线就是以假阳性概率(False positive rate)为横轴,击中概率为纵轴所组成的坐标图,和被试在特定刺激条件下由于采用不同的判断标准得出的不同结果画出的曲线. RO…
ROC曲线 意义 ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve),是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标.(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高.在ROC曲线上,最靠近坐标图左上方的点为敏感性和特异性均较高的临界值. 例子 如上图(图1,引用自维基百科…
转自https://blog.csdn.net/qq_26591517/article/details/80092679 1 ROC曲线的概念 受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为 感受性曲线(sensitivity curve).得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一 信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已.接受者操作特性曲线就是以假阳性概率(False pos…
  欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 统计项目联系QQ:231469242 用条件概率理解混合矩阵容易得多 sensitivity:真阳性…
背景   之前在研究Object Detection的时候,只是知道Precision这个指标,但是mAP(mean Average Precision)具体是如何计算的,暂时还不知道.最近做OD的任务迫在眉睫,所以仔细的研究了一下mAP的计算.其实说实话,mAP的计算,本身有很多现成的代码可供调用了,公式也写的很清楚,但是我认为仔细的研究清楚其中的原理更重要.   AP这个概念,其实主要是在信息检索领域(information retrieval)中的概念,所以这里会比较快速的过一下这个在信息…
在论文的结果分析中,ROC和PR曲线是经常用到的两个有力的展示图. 1.ROC曲线 ROC曲线(receiver operating characteristic)是一种对于灵敏度进行描述的功能图像.ROC曲线可以通过描述真阳性率(TPR)和假阳性率(FPR)来实现.由于是通过比较两个操作特征(TPR和FPR)作为标准,ROC曲线也叫做相关操作特征曲线. ROC分析给选择最好的模型和在上下文或者类分布中抛弃一些较差的模型提供了工具.ROC曲线首先是由二战中的电子工程师和雷达工程师发明的,他们是用…
在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口的概念: 1. TP, FP, TN, FN True Positives,TP:预测为正样本,实际也为正样本的特征数 False Positives,FP:预测为正样本,实际为负样本的特征数 True Negatives,TN:预测为负样本,实际也为负样本的特征数 False Negatives,…
题记:          近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线.也是本节实验课题,roc曲线的计算原理以及如果统计TP.FP.TN.FN.TPR.FPR.ROC面积等等.往往运用ROC面积评估模型准确率,一般认为越接近0.5,模型准确率越低,最好状态接近1,完全正确的模型面积为1.下面进行展开介绍: ROC曲线的面积计算原理 一.朴素贝叶斯法的工作过程框架图 二.利用weka工具,找到训练的预处理数据 1.利用朴素贝叶斯算法对weather.nominal.arff文件进行…
作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又理解了一下.看了这篇文章: https://www.douban.com/note/247271147/?type=like 讲的很好. 都是基于这张图,先贴一下: PR Precision-Recall曲线,这个东西应该是来源于信息检索中对相关性的评价吧,precision就是你检索出来的结果中,…
本文根据以下文章整理而成,链接: (1)http://blog.csdn.net/ice110956/article/details/20288239 (2)http://blog.csdn.net/chjjunking/article/details/5933105   1.概述 AUC(Area Under roc Curve)是一种用来度量分类模型好坏的一个标准.这样的标准其实有很多,例如:大约10年前在machine learning文献中一统天下的标准:分类精度:在信息检索(IR)领域…