tensorflow实现Minist手写体识别】的更多相关文章

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #下载MINIST数据集mnist = input_data.read_data_sets('MNIST_data', one_hot=True) #表示输入任意数量的MNIST图像,每一张图展平成784维的向量#placeholder是占位符,在训练时指定x = tf.placeholder(tf.float32, [None,…
统计手写数字集的HOG特征 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 这篇文章是模式识别的小作业,利用svm实现Minist数据集手写体识别,在这里我实现了opencv中的svm和libsvm两个版本,供大家做参考. [https://github.com/YihangLou/SVM-Minist-HandWriting-Recognition]https://github.com/YihangLou/…
安装完MXNet之后,运行了官网的手写体识别的例子,这个相当于深度学习的Hello world了吧.. http://mxnet.io/tutorials/python/mnist.html 运行的过程中开始想的是新建一个文件夹专门存放我的工程,但是在导入mxnet的过程中又出现了错,于是将minist的脚本文件放在了与mxnet平行的目录下,可以运行,并且十分节省显存!!但是有以下的问题: 1.在GTX1080的显卡上训练,网络是不收敛的,但是在980或者更旧的显卡上就可以,在github上也…
更新记录: 2018年2月5日 初始文章版本 近几天需要进行英语手写体识别,查阅了很多资料,但是大多数资料都是针对MNIST数据集的,并且主要识别手写数字.为了满足实际的英文手写识别需求,需要从训练集构造到神经网络搭建各个方面对现有代码进行修改. 神经网络的结构: 1.输入28*28=784维行向量 2.卷积层:卷积核大小5*5,共32个,激活函数ReLu 3.池化层:最大值池化,2*2窗口 4.卷积层:卷积核大小5*5,共64个,激活函数ReLu 5.池化层:最大值池化,2*2窗口 6.全连接…
介绍如何使用keras搭建一个多层感知机实现手写体识别及搭建一个神经网络最小的必备知识 import keras # 导入keras dir(keras) # 查看keras常用的模块 ['Input', 'Model', 'Sequential', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__ver…
mnist手写体识别 Mnist数据集可以从官网下载,网址: http://yann.lecun.com/exdb/mnist/ 下载下来的数据集被分成两部分:55000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test).每一个MNIST数据单元有两部分组成:一张包含手写数字的图片和一个对应的标签.我们把这些图片设为“xs”,把这些标签设为“ys”.训练数据集和测试数据集都包含xs和ys,比如训练数据集的图片是 mnist.train.images ,训练…
摘要: 本文是通过Keras实现深度学习入门项目——数字手写体识别,整个流程介绍比较详细,适合初学者上手实践. 对于图像分类任务而言,卷积神经网络(CNN)是目前最优的网络结构,没有之一.在面部识别.自动驾驶.物体检测等领域,CNN被广泛使用,并都取得了最优性能.对于绝大多数深度学习新手而言,数字手写体识别任务可能是第一个上手的项目,网络上也充斥着各种各样的成熟工具箱的相关代码,新手在利用相关工具箱跑一遍程序后就能立刻得到很好的结果,这时候获得的感受只有一个——深度学习真神奇,却没能真正了解整个…
0.目录 1.前言 2.通过pymssql与数据库的交互 3.通过pyqt与界面的交互 4.UI与数据库的交互 5.最后的main主函数 1.前言 版本:Python3.6.1 + PyQt5 + SQL Server 2012 以前一直觉得,机器学习.手写体识别这种程序都是很高大上很难的,直到偶然看到了这个视频,听了老师讲的思路后,瞬间觉得原来这个并不是那么的难,原来我还是有可能做到的. 于是我开始顺着思路打算用Python.PyQt.SQLServer做一个出来,看看能不能行.然而中间遇到了…
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNIST手写数字库对CNN(卷积神经网络)进行训练,准确度达到98%以上时,再准备独家手写数字10个.画图软件编辑的数字10个共计20个,让训练好的CNN进行识别,考察其识别准确度. 调试代码: 坑1:ModuleNotFoundError: No module named 'google' 解决:pi…
本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https://cran.r-project.org/web/packages/softmaxreg/index.html ------------------------------------------------------------------ 一.介绍 Softmax Regression模型本质还是…