深度学习—BN的理解(一)】的更多相关文章

0.问题 机器学习领域有个很重要的假设:IID独立同分布假设,就是假设训练数据和测试数据是满足相同分布的,这是通过训练数据获得的模型能够在测试集获得好的效果的一个基本保障.那BatchNorm的作用是什么呢?BatchNorm就是在深度神经网络训练过程中使得每一层神经网络的输入保持相同分布的. 思考一个问题:为什么传统的神经网络在训练开始之前,要对输入的数据做Normalization?原因在于神经网络学习过程本质上是为了学习数据的分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大…
神经网络各个操作层的顺序: 1.sigmoid,tanh函数:conv -> bn -> sigmoid -> pooling 2.RELU激活函数:conv -> bn -> relu -> pooling 一般情况下,先激活函数,后pooling.但对于RELU激活函数,二者交换位置无区别. 论文原文里面是“weights -> batchnorm -> activation ->maxpooling-> weights -> batc…
  全文转载于郭耀华-[深度学习]深入理解Batch Normalization批标准化:   文章链接Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift:发表于2015的ICML: 这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出.   Bat…
这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出. Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性.虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问.本文是对论文<Batch Normalization: A…
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误…
论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper) Part 0:传统激活函数.脑神经元激活频率研究.稀疏激活性 0.1  一般激活函数有如下一些性质: 非线性: 当激活函数是线性的,一个两层的神经网络就可以基本上逼近所有的函数.但如果激活函数是恒等激活函数的时候,即f(x)=x,就不满足这个性质,而且如果MLP(多层感知机)使用的是恒等激活函数,那么其实整个网络跟单层神经网络是等价的: 可微性: 当优化方法是基于梯度的时候,就体现了…
在弄清楚InfoGAN之前,可以先理解一下变分推断目的以及在概率论中的应用与ELBO是什么,以及KL散度 https://blog.csdn.net/qy20115549/article/details/93074519 https://blog.csdn.net/qy20115549/article/details/86644192. 如果理解了变分推断,KL散度,ELBO,对于InfoGAN中的重要方法就可以很容易理解了. 这里首先看一下简单的对数推导为方便对InfoGAN文中的公式的阅读:…
摘抄与某乎 anchor 让网络学习到的是一种推断的能力.网络不会认为它拿到的这一小块 feature map 具有七十二变的能力,能同时从 9 种不同的 anchor 区域得到.拥有 anchor 的 rpn 做的事情是它已知图像中的某一部分的 feature(也就是滑动窗口的输入),判断 anchor 是物体的概率.anchor 可能比感受野大,也可能比感受野小,如果 anchor 比感受野大,就相当于只看到了我关心的区域(anchor)的一部分(感受野),通过部分判断整体,如果比感受野小,…
学习的机器 用大量的数据识别图像和语音,深度学习的计算机(deep-learning computers) 向真正意义上的人工智能迈出了一大步. Nicola Jones Computer Science,Vol 505: P146-148, 2014.1.9 3年前,位于Mountain View, California的Google X实验室中研究者从YouTube视频中提取了100,000,000张静态图片,提供给Google Brain(一个由1000台计算机组成的网络,像蹒跚学步的小孩…
架构师小组交流会是由国内知名公司技术专家参与的技术交流会,每期选择一个时下最热门的技术话题进行实践经验分享.第一期:来自沪江.滴滴.蘑菇街.扇贝架构师的 Docker 实践分享 第二期:来自滴滴.微博.唯品会.魅族.点评关于高可用架构的实践分享 第三期:京东.宅急送的微服务实践分享(上)(下) 第四期小组交流会邀请到了 Polarr 联合创始人宫恩浩.搜狗大数据总监高君.七牛云 AI 实验室负责人彭垚,对深度学习框架选型.未来趋势展开了交流. 自由交流 Polarr 宫恩浩 我是宫恩浩,现在在斯…