L1-Day15】的更多相关文章

作用域相关 locals() -- 获取执行本方法所在命名空间的局部变量的字典 globals() --  获取全局变量的字典 print(locals()) print(globals()) {'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <_frozen_importlib_external.SourceFileLoader object at 0x000001A78CA58748>,…
目录 2018.11.2 正睿停课训练 Day15 A 郁闷的小G(二分) B 小G的树(树形DP) C 数的距离(思路) 考试代码 B C 2018.11.2 正睿停课训练 Day15 时间:3.5h 期望得分:100+20+20 实际得分:100+20+0 比赛链接 A 郁闷的小G(二分) 题目链接 //二分. #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar(…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
L1正则会产生稀疏解,让很多无用的特征的系数变为0,只留下一些有用的特征 L2正则不让某些特征的系数变为0,即不产生稀疏解,只让他们接近于0.即L2正则倾向于让权重w变小.见第二篇的推导. 所以,样本量比较少,但是特征特别多的时候,可以用L1正则,把一部分不显著的特征系数变成0: 而样本量多,特征偏少的时候,可以使用L2正则,保留住所有的特征,只是让系数变小,接近于0. 机器学习中的范数规则化之(一)L0.L1与L2范数 :http://blog.csdn.net/zouxy09/article…
[本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题:                                                                                \(  \min\limits_x f(x)  \) .如果\( f(x) \)可导,那么一个简单的方法是使用Gradient Descent (GD)方法,也即使用以下的式子进行…
Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之一,其训练常采用最大似然准则,且为防止过拟合,往往在目标函数中加入(可以产生稀疏性的) L1 正则.但对于这种带 L1 正则的最大熵模型,直接采用标准的随机梯度下降法(SGD)会出现效率不高和难以真正产生稀疏性等问题.本文为阅读作者 Yoshimasa Tsuruoka, Jun’chi Tsujii 和 Sophia Ananiadou 的论文 Stochastic Gradient Descent Train…
主要内容: l1_ls的算法流程 l1_ls的MATLAB实现 一维信号的实验与结果 前言 前面所介绍的算法都是在匹配追踪算法MP基础上延伸的贪心算法,从本节开始,介绍基于凸优化的压缩感知重构算法. 约束的凸优化问题: 去约束的凸优化问题: 在压缩感知中,J函数和H函数的选择: 那么,后面要解决的问题就是如何通过最优化方法来求出x. 一.l1_ls的算法 l1_ls,全称ℓ1-regularized least squares,基于L1正则的最小二乘算法,在标准内点法的基础上,在truncate…
The L1 Median (Weber 1909) 链接网址 Derived from a transportation cost minimization problem, the L1 median is defined to be any point which minimizes the sum of Euclidean distances to all points in the data set (fig.2). As with most median definitions, t…
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法…
L0/L1/L2范数的联系与区别 标签(空格分隔): 机器学习 最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0.L1.L2范数的联系与区别. L0范数 L0范数表示向量中非零元素的个数: \(||x||_{0} = \#(i)\ with\ \ x_{i} \neq 0\) 也就是如果我们使用L0范数,即希望w的大部分元素都是0. (w是稀疏的)所以可以用于ML中做稀疏编码,特征选择.通过最小化L0范数,来寻找最少最优的稀疏特征项.但不幸的是,L0范数的最优化…
python_way day15 HTML-DAY2 html-css回顾 javascript 一.html-css回顾 1.input与+,-号的写法 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Title</title> <style> .sp{ /*inline-block签默认边…
先来一炮尝尝: var i = 10; function myFunc(){ var i = 20; function innerFunc(){ alert(i); } return innerFunc; } var func = myFunc(); func(); 此栗为什么弹出20,而不是10?为什么定义在 myFunc 内部的 innerFunc 返回了以后,还能访问到 myFunc 内部的变量 i ? 这是因为在 innerFunc 返回了以后,仍然保留着函数运行的实例.执行环境和作用域…
kei编译时提示: *** WARNING L1: UNRESOLVED EXTERNAL SYMBOL *** WARNING L1:reference made to unresolved external 是因为包含该符号的文件未添加到工程中.…
L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error while regularizing your parameters",也就是在规则化参数的同时最…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是“minimizeyour error…
L1是跨国公司派驻工作人员到美国关联公司工作所需的签证.L1有两种: L1A是给管理人员的.L1B是给关键技术人员的.通过延期,L1A最长时间可达7年. L1B最长时间可达五年. 最初的L1申请,如果由成熟的公司提出,可以批三年. 如果由新设的公司提出,开始只批准一年,此后每次可延期两年. L1是跨国公司派驻工作人员到美国关联公司工作所需的签证.L1有两种: L1A是给管理人员的.L1B是给关键技术人员的.通过延期,L1A最长时间可达7年. L1B最长时间可达五年. 最初的L1申请,如果由成熟的…
L1 and L2 regularization add a cost to high valued weights to prevent overfitting. L1 regularization is an absolute value cost function and tends to set more weights to 0 (places more mass on zero weights) compared to L2 regularization. Difference be…
Spark Streaming揭秘 Day15 No Receivers方式思考 在前面也有比较多的篇幅介绍了Receiver在SparkStreaming中的应用,但是我们也会发现,传统的Receiver虽然使用比较方便,但是还是存在不少问题的,今天主要围绕kafka direct access讨论下,如果抛开Receiver来实现inputDStream该怎么做. KafkaRDD 我们知道,在Spark中,数据的访问主要是通过RDD来进行,而针对Kafka的数据,是使用了KafkaRDD.…
L1.L2范式及稀疏性约束 假设需要求解的目标函数为: E(x) = f(x) + r(x) 其中f(x)为损失函数,用来评价模型训练损失,必须是任意的可微凸函数,r(x)为规范化约束因子,用来对模型进行限制,根据模型参数的概率分布不同,r(x)一般有:L1范式约束(模型服从高斯分布),L2范式约束(模型服从拉普拉斯分布):其它的约束一般为两者组合形式. L1范式约束一般为: L2范式约束一般为: L1范式可以产生比较稀疏的解,具备一定的特征选择的能力,在对高维特征空间进行求解的时候比较有用:L…
Python之路,Day15 - Django适当进阶篇   本节内容 学员管理系统练习 Django ORM操作进阶 用户认证 Django练习小项目:学员管理系统设计开发 带着项目需求学习是最有趣和效率最高的,今天就来基于下面的需求来继续学习Django 项目需求: 1.分讲师\学员\课程顾问角色,2.学员可以属于多个班级,学员成绩按课程分别统计3.每个班级至少包含一个或多个讲师4.一个学员要有状态转化的过程 ,比如未报名前,报名后,毕业老学员5.客户要有咨询纪录, 后续的定期跟踪纪录也要保…
L1签证_百度百科 L1签证…
  Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之中的一个.其训练常採用最大似然准则.且为防止过拟合,往往在目标函数中增加(能够产生稀疏性的) L1 正则.但对于这样的带 L1 正则的最大熵模型,直接採用标准的随机梯度下降法(SGD)会出现效率不高和难以真正产生稀疏性等问题. 本文为阅读作者 Yoshimasa Tsuruoka, Jun'chi Tsujii 和 Sophia Ananiadou 的论文 Stochastic Gradient Descen…
L1,L2正则都可以看成是 条件限制,即 $\Vert w \Vert \leq c$ $\Vert w \Vert^2 \leq c$ 当w为2维向量时,可以看到,它们限定的取值范围如下图: 所以它们对模型的限定不同 而对于一般问题来说,L1 正则往往取到正方形的顶点,即会有很多分量为0,具有稀疏性,有特征选择的作用…
DAY15——UICollectionView 创建UICollectionView //创建一个布局对象,采用系统布局类UICollectionViewFlowLayout UICollectionViewFlowLayout *layout = [[UICollectionViewFlowLayout alloc] init]; //设置滑动方向 layout.scrollDirection = UICollectionViewScrollDirectionVertical; CGFloat…
\(L1\)正则化及其推导 在机器学习的Loss函数中,通常会添加一些正则化(正则化与一些贝叶斯先验本质上是一致的,比如\(L2\)正则化与高斯先验是一致的.\(L1\)正则化与拉普拉斯先验是一致的等等,在这里就不展开讨论)来降低模型的结构风险,这样可以使降低模型复杂度.防止参数过大等.大部分的课本和博客都是直接给出了\(L1\)正则化的解释解或者几何说明来得到\(L1\)正则化会使参数稀疏化,本来会给出详细的推导. \(L1\)正则化 大部分的正则化方法是在经验风险或者经验损失\(L_{emp…
Laplace(拉普拉斯)先验与L1正则化 在之前的一篇博客中L1正则化及其推导推导证明了L1正则化是如何使参数稀疏化人,并且提到过L1正则化如果从贝叶斯的观点看来是Laplace先验,事实上如果从贝叶斯的观点,所有的正则化都是来自于对参数分布的先验.现在来看一下为什么Laplace先验会导出L1正则化,也顺便证明Gauss(高斯)先验会导出L2正则化. 最大似然估计 很多人对最大似然估计不明白,用最简单的线性回归的例子来说:如果有数据集\((X, Y)\),并且\(Y\)是有白噪声(就是与测量…
最近一直有事,博客也停笔了一段时间,十分抱歉. 这一篇主要讲讲对象的比较,什么是对象的比较,我们知道两个数值类型只需要用"=="符号即可进行相等判断,但如果是两个Goods对象呢?如何进行比较?这时候,我们的equals方法就派上用场了.equals方法是类的祖先Object类的另一个protected方法,既然是protected方法(能被同一个包里的所有类所访问, 能被该类的子类所访问,子类可以和父类不在一个包中),子类是可以直接访问的,但如果没有覆盖该方法,那么使用的只是Obje…
ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666-------->把网络权重W看做为对上一层神经元的一个WX+B的线性函数模拟一个曲线就好.知乎大神真的多. 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深…
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模型复杂度来避免模型过拟合.确保泛化能力的一种有效方式.如果将模型原始的假设空间比作"天空",那么天空飞翔的"鸟"就是模型可能收敛到的一个个最优解.在施加了模型正则化后,就好比将原假设空间("天空")缩小到一定的空间范围("笼子")…