5在1e9+9下有二次剩余,那么fib的通项公式就有用了. 已知Fn,求n.注意到[(1+√5)/2]·[(1-√5)/2]=-1,于是换元,设t=[(1+√5)/2]n,原式变为√5·Fn=t-(-1)n·t-1.同乘t并移项,可得t2-√5·Fn·t-(-1)n=0.讨论n的奇偶性,BSGS求二次剩余大力解方程即可.用BSGS求二次剩余是非常简单的,求出其以原根为底的离散对数即可. 注意二次剩余有正负两解,但似乎代进去正根(即√gk=gk/2)就行了,不太明白.以及题目要求最小解,BSGS的…