前言 人脸检测标准库FDDB详细介绍了数据库和使用方法.对于训练的模型,如何评估模型的效果呢,本文对此进行介绍.说实话,参考了很多博客,但是感觉都不是很明白(当然本文也会有瑕疵),故在此记录! 测试环境 1.安装Perl: 2.安装Gnuplot: 操作步骤 1.根据训练好的模型测试数据库的人脸检测结果,并将结果输出,输出格式与要求一致即可,即out-fold-**.txt和results.txt: 检测结果格式如下: ... <image name i> <number of face…
前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcnn 将上文已完成预数据处理的目录data移动至face_faster_rcnn目录下, 并在face_faster_rcnn目录下创建face_label.pbtxt文件,内容如下: item { id: 1 name: 'face' } 在已下载的TensorFlow Object Detecti…
(转载请注明作者和出处 楼燚(yì)航的blog :http://www.cnblogs.com/louyihang-loves-baiyan/ 未经允许请勿用于商业用途) DPM目前使非神经网络方法里面较好的目标检测程序,作者呢也是Fast RCNN的作者 Ross Girshick,真的是牛人,这个模型是在2010年被提出的DPM的全称也就是Deformable Part Model,可变形部件模型.其主要思想是根据弹簧形变模型提出的,也就是一个目标物时分为主部分和子部件,分别叫做root和…
在计算机视觉和机器学习方向有一个特别好用但是比较低调的库,也就是dlib,与opencv相比其包含了很多最新的算法,尤其是深度学习方面的,因此很有必要学习一下.恰好最近换了一台笔记本,内含一块GTX1060的显卡,可以用来更快地跑深度学习算法.以前用公司HP的工作站配置过dlib,GPU是Quadro K420,用dlib自带的人脸识别算法(ResNet)测试过,相比较1060的速度确实要快上很多.dlib.cuda和cudnn的版本经常会更新,每次重新配置环境会遇到一些问题,在这里记下来吧.…
1.Easily Create High Quality Object Detectors with Deep Learning 2016/10/11 http://blog.dlib.net/2016/10/easily-create-high-quality-object.html dlib中的MMOD实现使用HOG特征提取,然后使用单个线性过滤器.这意味着它无法学习检测出具有复杂姿势变化的物体.HOG:方向梯度直方图(Histogram of oriented gradient)是在计算机…
1. 简介 这学期的计算机视觉课,我们组的课程项目为“照片自动美化”,其中我负责的模块为人脸检测与自动磨皮.功能为:用户上传一张照片,自动检测并定位出照片中的人脸,将照片中所有的人脸进行“磨皮”处理,使照片得到自动美化.完整代码见于GitHub. 2. 重要步骤 人脸检测 OpenCV样例库中自带的训练结果采用的是Viola-Jones框架,选择了一种类Haar矩形特征,采用Ada-Boost这种自适应上升的算法来选择用于分类的特征并进行分类,最后使用弱分类器级联的架构来实现快速运算.人脸检测使…
import cv2 import matplotlib.pyplot as plt %matplotlib inline # 提取预训练的人脸检测模型,提前下载好的模型 face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_alt.xml') # 加载彩色(通道顺序为BGR)图像 img = cv2.imread('images/9f510fb30f2442a70a9add3dd143ad4bd01…
这期教向大家介绍仅仅 1.3M 的轻量级高精度的关键点人脸检测模型DBFace,并手把手教你如何在自己的电脑端进行部署和测试运行,运行时bug解决. 01. 前言 前段时间DBFace人脸检测库横空出世,但是当时这个人脸识别模型是7M大小,几乎可以识别出世界最大自拍中的所有人像.DBFace出自国内人工智能公司深兰科技(DeepBlue),这个模型的创建者正是这个公司的两位“高手”-Libia和Wish,而最近,高手就是高手,两位大佬对模型进行了再升级,现在这个模型的大小仅仅只有1.3M. 该模…
前言 使用opencv自带的分类器效果并不是很好,由此想要训练自己的分类器,正好opencv有自带的工具进行训练.本文就对此进行展开. 步骤 1.查找工具文件: 2.准备样本数据: 3.训练分类器: 具体操作 注意,本文是在windows系统实现的,当然也可以在linux系统进行. 1.查找工具文件: opencv中的自带的分类器训练工具在开源库中以应用程序的类型呈现的,具体目录如下. .\opencv2410\build\x64\vc12\bin 可以在该目录下查找到相关的工具文件,有open…
人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的tensorflow版亦支持此种网络模型,万事俱备,就放开手做吧.前面说过,我们需要通过大量的训练数据训练我们的模型,因此首先要做的就是把训练数据准备好,并将其输入给CNN.前面我们已经准备好了2000张脸部图像,但没有进行标注,并且还需要将数据加载到内存,以方便输入给CNN.因此,第一步工作就是加载并…