全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌套算法啊,见"Horner嵌套算法". 1. 单项式(Monomial)基插值 1)插值函数基 单项式基插值采用的函数基是最简单的单项式:$$\phi_j(t)=t^{j-1}, j=1,2,...n;\quad f(t)=p_{n-1}(t)=x_1+x_2t+x_3t^2+...x_n…
设代数式序列 $q_1(t), q_2(t), ..., q_{n-1}(t)$ ,由它们生成的多项式形式的表达式(不一定是多项式): $$p(t)=x_1+x_2q_1(t)+...x_nq_1(t)q_2(t)..q_{n-1}(t)=\sum\limits_{i=1}^n(x_i\prod\limits_{j=1}^{i-1}q_j(t))$$ 一般来讲,按照这个形式计算函数在 $t_0$ 点的取值的复杂度为:n-1次 $q_i(t)$ 求值,n-1次浮点数乘法(生成n个不同的乘积),n-…
预备知识:FFT/NTT 多项式的逆 给定一个多项式 F(x)F(x)F(x),请求出一个多项式 G(x)G(x)G(x),满足 F(x)∗G(x)≡1(mod xn)F(x)*G(x) \equiv 1(mod\ x^n)F(x)∗G(x)≡1(mod xn). 系数对 998244353998244353998244353 取模,1≤n≤1051≤n≤10^51≤n≤105 首先将多项式的长度拓展至222的次幂,然后我们要求的是 G(x)∗F(x)≡1 (mod xn)G(x)*F(x) \…
[BZOJ3625/CF438E]小朋友和二叉树(多项式求逆,多项式开方) 题面 BZOJ CodeForces 大致题意: 对于每个数出现的次数对应的多项式\(A(x)\) 求\[f(x)=\frac{2}{\sqrt{-4A(x)+1}+1}\] 题解 多项式开方+多项式求逆模板题 我之前写的多项式求逆很丑,常数大的惊人 成功拿到洛谷模板题倒数第一的速度 于是,我学习了一波Gay神的写法 写了一下这道题目 具体的细节暂时不写了,以后肯定有机会的写的(这点我可以保证) #include<ios…
LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不容易看出 f(n,k)是关于k的2n+1次多项式. 证明可以用数学归纳法证明 且还可以从非常规律的转移中看出这应该是一个形似多项式的东西. 可以直接O(n)拉格朗日插值 不过这里懒得写因为 外面dp是\(n^2\)求点值的所以这里没必要O(n). 注意初始化. const ll MAXN=1010;…
牛顿插值法的原理,在维基百科上不太全面,具体可以参考这篇文章.同样贴出,楼主作为初学者认为好理解的代码. function p=Newton1(x1,y,x2) %p为多项式估计出的插值 syms x n = length(x1); %差商的求法 for i=2:n f1(i,1)=(y(i)-y(i-1))/(x1(i)-x1(i-1)); end for i=2:n for j=i+1:n f1(j,i)=(f1(j,i-1)-f1(j-1,i-1))/(x1(j)-x1(j-i)); en…
1. 已知函数在下列各点的值为   0.2 0.4 0.6 0.8 1.0   0.98 0.92 0.81 0.64 0.38 用插值法对数据进行拟合,要求给出Lagrange插值多项式和Newton插值多项式的表达式,并计算插值多项式在点的值. 程序: x=[0.2 0.4 0.6 0.8 1.0]; y=[0.98 0.92 0.81 0.64 0.38]; x0=[0.2 0.28 0.44 0.76 1 1.08]; [f,f0]=Lagrange(x,y,x0) function […
插值公式为: 差商递归公式为: # -*- coding: utf-8 -*- #Program 0.4 Newton Interpolation import numpy as np import matplotlib.pyplot as plt #递归求差商 def get_diff_quo(xi, fi): if len(xi) > 2 and len(fi) > 2: return (get_diff_quo(xi[:len(xi)-1], fi[:len(fi)-1]) - get_…
手动博客搬家: 本文发表于20181127 08:39:42, 原地址https://blog.csdn.net/suncongbo/article/details/84559818 题目链接: https://www.luogu.org/problem/show?pid=4726 题意: 给定\(n\)次多项式\(A(x)\) 求多项式\(f(x)\)满足\(f(x)\equiv e^{A(x)} (\mod x^n)\) 题解 这个比对数函数复杂一些.. 前铺知识 泰勒展开 对于一个函数,我…
题目链接 https://atcoder.jp/contests/agc019/tasks/agc019_e 题解 tourist的神仙E题啊做不来做不来--这题我好像想歪了啊= =-- 首先我们可以考虑,什么样的操作序列才是合法的? 有用的位置只有两种,一种是两个序列在这个位置上都是1, 称作11型,另一种是一个0一个1, 称作01型.设两种位置分别有\(A\)个和\(2B\)个. 考虑一个操作序列,交换两个11型相当于没交换,每个11型只会被交换两次,每个01型只会被交换一次.这也就是说,如…