与RDD类似,DStream也提供了自己的一系列操作方法,这些操作可以分成四类: Transformations 普通的转换操作 Window Operations 窗口转换操作 Join Operations 合并操作 Output Operations 输出操作 2.2.3.1 普通的转换操作 普通的转换操作如下表所示: 转换 描述 map(func) 源 DStream的每个元素通过函数func返回一个新的DStream. flatMap(func) 类似与map操作,不同的是每个输入元素…
提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可以分为如以下三个类型. 复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间. 基于历史数据的交互式查询(interactive query),通常的时间跨度在数十秒到数分钟之间. 基于实时数据流的数据处理(streaming data proces…
一.        场景 ◆ Spark[4]: Scope:  a MapReduce-like cluster computing framework designed for low-latency iterativejobs and interactive use from an interpreter(在大规模的特定数据集上的迭代运算或重复查询检索) 正如其目标scope,Spark适用于需要多次操作特定数据集的应用场合.需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小…
预览 Spark Streaming是Spark核心API的扩展,支持高扩展,高吞吐量,实时数据流的容错流处理.数据可以从Kafka,Flume或TCP socket等许多来源获取,并且可以使用复杂的算法进行处理(比如map,reduce,join,window等高级函数).最终,处理的结果数据可以推送到文件系统,数据库或实时仪表盘上.           在内部,它的工作原理如下图.Spark Streaming接收实时输入数据流并将数据分成批,然后由Spark引擎处理,进而批量生成最终结果流…
Spark Streaming的编程和Spark的编程如出一辙,对于编程的理解也非常类似.对于Spark来说,编程就是对于RDD的操作:而对于Spark Streaming来说,就是对DStream的操作.下面将通过一个大家熟悉的WordCount的例子来说明Spark Streaming中的输入操作.转换操作和输出操作. Spark Streaming初始化:在开始进行DStream操作之前,需要对Spark Streaming进行初始化生成StreamingContext.参数中比较重要的是…
原文链接:Spark Streaming:大规模流式数据处理的新贵 摘要:Spark Streaming是大规模流式数据处理的新贵,将流式计算分解成一系列短小的批处理作业.本文阐释了Spark Streaming的架构及编程模型,并结合实践对其核心技术进行了深入的剖析,给出了具体的应用场景及优化方案. 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处…
转自:http://www.csdn.net/article/2014-01-28/2818282-Spark-Streaming-big-data 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可以分为如以下三个类型. 复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间. 基于历史数据的交互式…
SparkStreaming之window滑动窗口应用,Spark Streaming提供了滑动窗口操作的支持,从而让我们可以对一个滑动窗口内的数据执行计算操作.每次掉落在窗口内的RDD的数据,会被聚合起来执行计算操作,然后生成的RDD,会作为window DStream的一个RDD. 网官图中所示,就是对每三秒钟的数据执行一次滑动窗口计算,这3秒内的3个RDD会被聚合起来进行处理,然后过了两秒钟,又会对最近三秒内的数据执行滑动窗口计算.所以每个滑动窗口操作,都必须指定两个参数,窗口长度以及滑动…
参考链接:http://spark.apache.org/docs/latest/streaming-programming-guide.html 一.Spark Streaming 介绍 Spark Streaming是核心Spark API的扩展,可实现实时数据流的可伸缩,高吞吐量,容错流处理.数据可以从Kafka.ZeroMQ等消息队列以及TCP sockets或者目录文件从数据源获取数据,并且可以使用map,reduce,join和window等高级函数进行复杂算法的处理.最后,可以将处…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理…