题目:http://acm.hdu.edu.cn/showproblem.php?pid=5411 题意:按题目转化的意思是,给定N和M,再给出一些边(u,v)表示u和v是连通的,问走0,1,2.....M步的方案数. 分析:这题和 hdu5318 The Goddess Of The Moon差点儿相同,就是多了一个等比数列求和. 代码: #include <cstdio> #include <iostream> #include <cstring> using na…
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1][v] 把一个点拆成9个来转换边长,然后根据题意模拟连边就行了. 最后用矩阵快速幂优化一下转移就能过啦. 代码: #include<bits/stdc++.h> using namespace std; int n,t,m; char s[50]; const int mod=2009; str…
传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的. 考虑到每次都是一样的就可以用矩阵快速幂优化一波. 代码: #include<bits/stdc++.h> using namespace std; int n,m,mod,fail[21]; bool vis[21][10]; char s[21]; struct Matrix{ int va…
传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个三滴血的. 显然是可以从f[i−1]f[i-1]f[i−1]转移过来的. 但是仔细一想,这个递推关系在i=1i=1i=1~nnn的时候都是一样的,于是把后面三个状压上矩阵快速幂优化就行了. 直接转是O(T∗size3log)O(T*size^3log)O(T∗size3log)的. 于是可以用倍增的…
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. 在这种限制下其实只有 N−1N − 1N−1 个位置可以切. 对于一种切的方案,假如切完后每块的宽度分别是:w1,w2,w3,...,wk(∑wi=N)w_1, w_2, w_3, ..., w_k(\sum w_i = N)w1​,w2​,w3​,...,wk​(∑wi​=N),那么该种方案对应…
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优化dp. 我们设$ f[i][j] $表示前$ i $位匹配不吉利数字$ j $位时的方案数,因为每一位的转移方式都是相同的,于是用kmp预处理出转移矩阵,直接矩乘快速幂就能过了. #include<cstdio> #include<cmath> #include<cstdlib…
CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 558    Accepted Submission(s): 227 Problem Description CRB is now playing Jigsaw Puzzle.There are N kinds of pieces with infinite s…
传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9,m≤2e7,p≤100)(n\le1e9,m\le2e7,p\le100)(n≤1e9,m≤2e7,p≤100). 思路: 首先因为只需要是ppp的倍数,因此可以看成全局和对ppp取模为000方案数. 设状态f0/1,i,jf_{0/1,i,j}f0/1,i,j​表示不限制选出的数/选出的数不能是质…
传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法总数. 然后有f[i][l][k1+k2]=∑f[i][j][k1]∗f[j][l][k2]f[i][l][k1+k2]=\sum f[i][j][k1]*f[j][l][k2]f[i][l][k1+k2]=∑f[i][j][k1]∗f[j][l][k2] 这不就是矩阵乘法吗? 上快速幂优化就行了.…
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都是固定的方式 所以可以预处理转移矩阵用矩阵快速幂进行优化 但是如果在计算的时候暴力\(状态^3\)进行转移会TLE 但是注意到在这个时候有用的状态其实只有一个向量 所以就预处理倍增然后用向量乘矩阵来优化到单次\(logn状态^2\)就可以了 有点卡常 //Author: dream_maker #i…