欧拉函数(汇总&例题)】的更多相关文章

定义 欧拉函数 $\varphi(n)$表示小于等于$n$的正整数中与$n$互质的数的数目. 性质 1.积性函数(证明). 2.$\varphi(1)=1$(显然) 3.对于质数$n$,$\varphi(n)=n-1$(显然) 4.对于质数的幂$n=p^k$(其中$p$为质数,$k$为正整数),$\varphi(n)=p^{k-1}\cdot(p-1)$ 证明: 归纳法,在$k=1$时显然成立,假设当$k$为$k-1$时成立,那么对于将$1,2,...p^k$中每一个数表示为$x\cdot p^…
                                                10200 - Prime Time 此题极坑(本菜太弱),鉴定完毕,9遍过. 题意:很简单的求一个区间[a,b]内满足i*i+i+41(i>=a&&i<=b,0<=a<=b<=10000.)是素数的数有多个,求出百分比. 思路:直接裸判就行了(竟然不超时),但结果要加上1e-8(are you kidding me?). 下面来说说我怎么跪了,开始也是直接裸判,我…
由于这是第一天去实现polya题,所以由易到难,先来个铺垫题(假设读者是看过课件的,不然可能会对有些“显然”的地方会看不懂): 一:POJ1286 Necklace of Beads :有三种颜色,问可以翻转,可以旋转的染色方案数,n<24. 1,n比较小,恶意的揣测出题人很有可能出超级多组数据,所以先打表. 2,考虑旋转: ;i<n;i++) sum+=pow(n,gcd(n,i)); 3,考虑翻转: ) sum+=n*pow(,n/+) ; else { sum+=n/*pow(,n/)…
这道题要找二元组(x, y) 满足1 <= x, y <= n 且x与y互素 那么我就可以假设x < y, 设这时答案为f(n) 那么答案就为2 * f(n) +1(x与y反过来就乘2,加上(1,1)) 那么f(n)可以用欧拉函数求 显然f(n) = phi(2) + phi(3) + --+phi(n) #include<cstdio> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespac…
欧拉函数的作用: 有[1,2.....n]这样一个集合,f(n)=这个集合中与n互质的元素的个数.欧拉函数描述了一些列与这个f(n)有关的一些性质,如下: 1.令p为一个素数,n = p ^ k,则   f(n) = p ^ k - p ^ (k-1) 2.令m,n互质,则   f(m*n) = f(m) * f(n) 3.如果n为奇数,则    f(2 * n) = f(n) 下面给出一个例题的代码,例题链接:http://acm.hdu.edu.cn/showproblem.php?pid=…
E - (例题)欧拉函数求和 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Description A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0…
D - (例题)欧拉函数性质 Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Description Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popul…
欧拉函数 Time Limit: 5 Sec  Memory Limit: 256 MBSubmit: 1112  Solved: 418[Submit][Status][Discuss] Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sample Input 8 Sample Output 4 HINT   Source By FancyCoder 大整数分解主要背代码,证明非常麻烦. 题目bzoj4802是到经典例题…
1.某神犇Blog 学了三遍的 欧拉函数φ--DEADFISH7 2.我要做一些补充o(* ̄▽ ̄*)o $φ(1)=1$: 公式有两种形式,一种有太多除法,实际可能会慢些.通用 对于任意$n$>1,1~$n$中与$n$互质的数之和等于$n*φ(n)/2$. 是积性函数. $sigma(d|n) φ(d)=n$. 代码实现 1°:朴素的质因数分解顺便求出 void init_phi() { int ans=n; ;i<=sqrt(n);i++) { ) { ans=ans/i*(i-); ) n…
约数 一.概念 约数,又称因数.整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a.a称为b的倍数,b称为a的约数. 二.性质 1.整数唯一分解 1)定义 对于任意一个正整数N,都有 N=p1c1*p2c2...pmcm,其中p为质数. 2)正约数集合 ={p1b1*p2b2*...pmbm|0<=bi<=ci}   3)正约数的和 f(n)=(p1^0+p1^1+p1^2+…p1^a1)(p2^0+p2^1+p2^2+…p2^a2)…(pk^0+pk…