网址:http://blog.csdn.net/alec1987/article/details/7414450 在数学中,正规矩阵 是与自己的共轭转置交换的复系数方块矩阵,也就是说, 满足 其中 是 的共轭转置. 如果 是实系数矩阵,那么条件简化为 其中 是 的转置矩阵. 矩阵的正规性是检验矩阵是否可对角化的一个简便方法:任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后变为对角矩阵的矩阵都是正规矩阵. 在复系数矩阵中,所有的酉矩阵.埃尔米特矩阵和斜埃尔米特矩阵都是…
2016-01-27 21:03 524人阅读 评论(0) 收藏 举报 分类: 理论/笔记(20) 版权声明:本文为博主原创文章,转载请注明出处,谢谢! 题目:对称矩阵.Hermite矩阵.正交矩阵.酉矩阵.奇异矩阵.正规矩阵.幂等矩阵 看文献的时候,经常见到各种各样矩阵,本篇总结了常见的对称矩阵.Hermite矩阵.正交矩阵.酉矩阵.奇异矩阵.正规矩阵.幂等矩阵七种矩阵的定义,作为概念备忘录吧,忘了可以随时查一下. 1.对称矩阵(文献[1]第40页) 其中上标T表示求矩阵的转置(文献[1]第3…
1.对称矩阵 2.Hermite矩阵 3.正交矩阵 4.酉矩阵…
我们上一章节显示图片的时候,会发现我们制定的顶点在Stage3D中其实是存在一个区间的: x轴(从左到右):[-1.0-1.0] y轴(从下到上):[-1.0-1.0] z轴(从近到远):[0-1.0] 超过这个区间的部分我们的图片都会看不见,大家可以重新修改上一节的代码中的顶点位置查看: 并且该区间不会跟随Stage3D的尺寸改变而改变,即无论Stage3D的显示尺寸如何变动,绘制的图像是会进行对应的拉伸操作的: 那么这就导致了一个问题的出现,如果我需要显示图片的原有尺寸(或者指定的尺寸)且该…
1.标准正交矩阵 假设矩阵Q有列向量q1,q2,...,qn表示,且其列向量满足下式: 则 若Q为方阵,由上面的式子则有 我们举例说明上述概念: 2.标准正交矩阵的好处     上面我们介绍了标准正交矩阵,那么标准正交矩阵的用处在哪?下面以两方面来说明标准正交矩阵的用处: 求解Ax=b     在前面文章<正交投影>中,有下式: 当矩阵A为标准正交矩阵Q时,由于正交矩阵与其转置的乘积为单位矩阵,则上式可以转化为: 可以发现,求x时不需要矩阵Q的逆,只需要知道转置即可,这样简化了计算. 求解投影…
原文地址:https://www.jianshu.com/p/1004dd342fe2 一.正交矩阵 二.EVD 特征值分解(Eigen Value Decomposition, EVD). 对于对称阵\(A_{m*m}\),设特征值为\(\lambda_i\),对应的单位特征向量为\(x_i\),则有 若\(A\)非满秩,会导致维度退化,使得向量落入\(m\)维空间的子空间中. 最后,\(U\)变换是\(U^T\)变换的逆变换. 三.SVD 奇异值分解(Singular Value Decom…
http://blog.sina.com.cn/s/blog_6084f588010192ug.html 在opengles1.1中设置正交矩阵只要一个函数调用就可以了:glOrthof,但是opengles2.0开始,为了增加渲染灵活性摆脱了固定管道渲染,这样就需要手动去实现glOrthof所对应的矩阵. 在iphone3D 编程一书中给出了这个矩阵的定义: void RenderingEngine2::ApplyOrtho(float maxX, float maxY) const { fl…
这部分我们有两个目标.一是了解正交性是怎么让 \(\hat x\) .\(p\) .\(P\) 的计算变得简单的,这种情况下,\(A^TA\) 将会是一个对角矩阵.二是学会怎么从原始向量中构建出正交向量. 1. 标准正交基 向量 \(q_1, \cdots, q_n\) 是标准正交的,如果它们满足如下条件: \[q_i^Tq_j = \begin{cases} 0,&\text{if } i \not = j \quad(正交向量)\\ 1, &\text{if } i = j \quad…
复方阵 U 称为酉矩阵,如果满足: U∗U=UU∗=I 换句话说,矩阵 U 的共轭转置 U∗ 就是 U 的逆矩阵. U∗=U−1 1. unitary matrix 保持内积不变 ⟨Ux,Uy⟩=⟨x,y⟩…
[ x1  x2 y1   y2] x1^2+y1^2=1 x2^2 + y2^2=1 x1*x2  + y1*y2=0 如果专置后还是 x1^2 + x2^2=1 y1^2  +y2^2=1 x1*y1 + x2*y2=0 上图可以看出2个直接角三角型全等.从而得出结论.…
特征值选择技术要点 特征值选择技术要点(特征值分解) 作者:王立敏 文章来源:xiahouzuoxin 一.特征值分解 1.特征值分解 线性代数中,特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法.需要注意只有对可对角化矩阵才可以施以特征分解. 设A有n个特征值及特征向量,则: 将上面的写到一起成矩阵形式: 若(x1,x2,...,xn)可逆,则左右两边都求逆,则方阵A可直接通过特征…
奇异值: 奇异值分解法是线性代数中一种重要的矩阵分解法,在信号处理.统计学等领域有重要应用. 定义:设A为m*n阶矩阵,A'表示A的转置矩阵,A'*A的n个特征值的非负平方根叫作A的奇异值.记为σi(A).如果把A‘*A的特征值记为λi(A‘*A),则σi(A)=sqrt(λi(A’*A)). 奇异矩阵:    奇异矩阵是线性代数的概念,就是对应的行列式等于0的矩阵. 奇异矩阵的判断方法:首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵.若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵).然…
将学习到什么 矩阵 \(A\) 与 \(\dfrac{1}{2}(A+A^T)\) 两者生成相同的二次型,而后面那个矩阵是对称的,这样以来,为了研究实的或者复的二次型,就只需要研究由对称矩阵生成的二次型.   基本概念   定义1: 矩阵 \(A=[a_{ij}] \in M_n\) 称为 Hermite 的,如果 \(A=A^*\):它是斜 Hermite 的,如果 \(A=-A^*\). 对于 \(A,B \in M_n\),可得出很多简单明了的结论:   (1) \(A+A^*\), \(…
很多文章说到奇异值分解的时候总是大概罗列下它的功能,并没有对功能及物理意义进行过多的阐述,现在我来对奇异值进行整理一下. 一 奇异值分解 对任意的矩阵A∈Fmn,rank(A)=r(矩阵的秩),总可以取A的如下分解:,其中U和V是正交矩阵.分别为左右奇异值向量. U是m×m阶酉矩阵:Σ是m×n阶非负实数对角矩阵:而V*,即V的共轭转置,是n×n阶酉矩阵.这样的分解就称作M的奇异值分解.Σ对角线上的元素Σii即为M的奇异值. V的列(columns)组成一套对M的正交"输入"或"…
1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其中U是m×m阶酉矩阵:Σ是半正定m×n阶对角矩阵:而V*,即V的共轭转置,是n×n阶酉矩阵. 将矩阵A乘它的转置,得到的方阵可用于求特征向量v,进而求出奇异值σ和左奇异向量u. #coding:utf8 import numpy as np np.set_printoptions(precision…
来源:http://blog.sina.com.cn/s/blog_670445240101nlss.html 1   背景介绍 这是一种排序方法.假设我们对N个样方有了衡量它们之间差异即距离的数据,就可以用此方法找出一个直角坐标系(最多N-1维),使N个样方表示成N个点,而使点间的欧氏距离的平方正好等于原来的差异数据. 由于样方间的差异数据可以由各种方式给出,只要对一些差异进行定量描述,如甲型,乙型,丙型等,就可以求出样方的数量坐标,实现定性到定量的转变. 主坐标方法简单.明确.效率很高.它与…
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩阵,称为右奇异矩阵. 二.SVD奇异值分解与特征值分解的关系 特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征.然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵. 这里,和是方阵,和为单位矩阵,为的特征向量,为的特征向量.和的特征值为的奇异值的平方. 三.…
tensorflow集成和实现了各种机器学习基础的算法,可以直接调用. 代码集:https://github.com/ageron/handson-ml 监督学习 1)决策树(Decision Tree)和随机森林 决策树: 决策树是一种树形结构,为人们提供决策依据,决策树可以用来回答yes和no问题,它通过树形结构将各种情况组合都表示出来,每个分支表示一次选择(选择yes还是no),直到所有选择都进行完毕,最终给出正确答案. 决策树(decision tree)是一个树结构(可以是二叉树或非二…
转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD…
这部分矩阵运算的知识是三维重建的数据基础. 矩阵分解 求解线性方程组:,其解可以表示为. 为了提高运算速度,节约存储空间,通常会采用矩阵分解的方案,常见的矩阵分解有LU分解.QR分解.Cholesky分解.Schur分解.奇异分解等.这里简单介绍几种. LU分解:如果方阵A是非奇异的,LU分解总可进行.一个矩阵可以表示为一个交换下三角矩阵和一个上三角矩阵的乘机.更整洁的形式是:一个矩阵可以表示为一个上三角矩阵和一个下三角矩阵以及一个置换矩阵的形式,即: 从而方程的解可以表示为 QR分解:矩阵可以…
主成分分析(PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数 量的特征对样本进行描述以达到降低特征空间维数的方法,它的本质实际上是K-L变换.PCA方法最著名的应用应该是在人脸识别中特征提取及数据维,我们知 道输入200*200大小的人脸图像,单单提取它的灰度值作为原始特征,则这个原始特征将达到40000维,这给后面分类器的处理将带来极大的难度.著名 的人脸识别Eigenface算法就是采用PCA算法,用一个低维子空间描述人脸图像,同时用保存了识别所需要的信息.下面先介绍下PCA…
转载请声明出处 SVD奇异值分解概述 SVD不仅是一个数学问题,在工程应用中的很多地方都有它的身影,比如前面讲的PCA,掌握了SVD原理后再去看PCA那是相当简单的,在推荐系统方面,SVD更是名声大噪,将它应用于推荐系统的是Netflix大奖的获得者Koren,可以在Google上找到他写的文章:用SVD可以很容易得到任意矩阵的满秩分解,用满秩分解可以对数据做压缩.可以用SVD来证明对任意M*N的矩阵均存在如下分解: 这个可以应用在数据降维压缩上!在数据相关性特别大的情况下存储X和Y矩阵比存储A…
最近突然看到一个问题,PCA和SVD有什么关系?隐约记得自己照猫画虎实现的时候PCA的时候明明用到了SVD啊,但SVD(奇异值分解)和PCA的(特征值分解)貌似差得相当远,由此钻下去搜集了一些资料,把我的一些收获总结一下,以免以后再忘记. PCA的简单推导 PCA有两种通俗易懂的解释, 1)是最大化投影后数据的方差(让数据更分散):地址:http://www.cnblogs.com/shixisheng/p/7107363.html 2)是最小化投影造成的损失.(下边讲的就是这个方法) 这两个思…
主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现   一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的积. QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础. 定义: 实数矩阵 A 的 QR 分解是把 A 分解为Q.R,这里的 Q 是正交矩阵(意味着 QTQ = I)而 R 是上三角矩阵.类似的,我们可以定义 A 的 QL, RQ 和 LQ 分解. 更一般的说,我…
1.概述 我们先从实数域R开始说起,再延伸到复数域C上去,先列出一个表格,把实数域以及复数域中常见的矩阵及其性质概括如下: 表1 常见矩阵及其性质 我们知道实对称矩阵正交相似于对角阵,从而将一个方阵对角化,那么一个的矩阵能否对角化为对角阵呢,答案是肯定的,这也是奇异值分解(singular value decomposition,SVD)的意义所在. 设A是一个矩阵,则存在m阶正交矩阵U和n阶正交矩阵V,满足 其中.习惯上,设,称为奇异值(singular value),称U和V的前r列向量为奇…
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下. SV…
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下. SV…
1.特征值分解 主要还是调包: from numpy.linalg import eig 特征值分解:  A = P*B*PT  当然也可以写成 A = QT*B*Q  其中B为对角元为A的特征值的对角矩阵,P=QT, 首先A得对称正定,然后才能在实数域上分解, >>> A = np.random.randint(-10,10,(4,4)) >>> A array([[ 6, 9, -10, -1], [ 5, 9, 5, -5], [ -8, 7, -4, 4], […