首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
hihoCoder #1143 : 骨牌覆盖问题·一 (斐波那契数列)
】的更多相关文章
hihoCoder #1143 : 骨牌覆盖问题·一 (斐波那契数列)
题意:我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢? 思路:这是斐波那契数列啊,f[n] = f[n-1] + f[n-2],初始时 f[0]=1,f[1]=1,f[2]=2.其实跟下面的递推思路差不多吧.但是关于这种简单,一般都可以用矩阵快速幂解决,即O(logn)时间内解决.主要难点是构造初始矩阵,如果是后面一个数字是由卡面两个数字相加而成的,那么一般可构造一个2*2的01矩阵,才这么小,随便试试吧,只要乘完的结果第二位是答案即可…
hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)
[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢? 举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式: 提示:骨牌覆盖 提示:如何快速计算结果 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 M…
C#版 - 剑指offer 面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖) 题解
面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tpId=13&tqId=11160 参与人数:7267 时间限制:1秒 空间限制:32768K 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项 Fibonacci(int n). 分析: 用递归会TLE,因为有不少地方进行了重复计算,改为循环即可解决(迭代法…
7、斐波那契数列、跳台阶、变态跳台阶、矩形覆盖------------>剑指offer系列
题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offer中实际是当作递归的反例来说的. 递归的本质是吧一个问题分解成两个或者多个小问题,如果多个小问题存在互相重叠的情况,那么就存在重复计算. f(n) = f(n-1) + f(n-2) 这种拆分使用递归是典型的存在重叠的情况,所以会造成非常多的重复计算. 另外,每一次函数调用爱内存中都需要分配空间,每…
斐波那契数列F(n)【n超大时的(矩阵加速运算) 模板】
hihocoder #1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢? 举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式: 提示:骨牌覆盖 提示:如何快速计算结果 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示…
斐波那契数列 51nod
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可. Input 输入1个数n…
剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调用的层级太多,就会超出栈容量. 循环:通过设置计算的初始值及终止条件,在一个范围内重复运算. 斐波拉契数列 题目一:写一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项,定义如下: 第一种解法:用递归的算法: long long Fabonacci(unsigned int n) { i…
javascript . 03 函数定义、函数参数(形参、实参)、函数的返回值、冒泡函数、函数的加载、局部变量与全局变量、隐式全局变量、JS预解析、是否是质数、斐波那契数列
1.1 知识点 函数:就是可以重复执行的代码块 2. 组成:参数,功能,返回值 为什么要用函数,因为一部分代码使用次数会很多,所以封装起来, 需要的时候调用 函数不调用,自己不会执行 同名函数会覆盖,后面的覆盖前面的 函数名等于整个函数,打印函数名,就等于打印整个函数的代码 7. 加载函数的时候只加载函数名,不加载函数体 参数相当于局部变量 两个平级的函数中变量不会相互影响 10. 预解析:函数在解释文档的时候会被整体提到文档的最前面,和加载不一样 第一种:解析的时候会被提前,可在任…
【斐波那契数列】java探究
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 解析 (1)递归方式 对于公式f(n) = f(n-1) + f(n-2),明显就是一个递归调用,因此根据f(0) = 0和f(1) = 1我们不难写出如下代码: public int Fibonacci(int n) { if(n == 0 || n == 1){ return n; } return Fibonacci(n - 1) + Fibonacci(n - 2…
《剑指offer》斐波那契数列
本题来自<剑指offer> 斐波那契数列 矩阵覆盖 题目一: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 思路: 递归方式:return n<=0 ? 0 : n+fib(n-1) 递归是由于函数调用自身,有时间和空间的消耗,每次自身的调用都需要在内存栈中分配空间以保存参数,返回地址和变量,而且栈中压入和弹出数据都需要时间,效率不高,如果数据过大,会导致栈内存溢出.但是代码简洁. 循环方式:O(n)时间内的操作…