TensorFlow 是用于机器学习任务的开源软件.它的创建者 Google 希望提供一个强大的工具以帮助开发者探索和建立基于机器学习的应用,所以他们在去年作为开源项目发布了它.TensorFlow 是一个非常强大的工具,专注于一种称为深层神经网络deep neural network(DNN)的神经网络. 深层神经网络被用来执行复杂的机器学习任务,例如图像识别.手写识别.自然语言处理.聊天机器人等等.这些神经网络被训练学习其所要执行的任务.由于训练所需的计算是非常巨大的,在大多数情况下需要 G…
关于anaconda安装,虽然清华镜像站资源很丰富,但是不知道是网络还是运气的问题,用这个路径安装的时候总是出现文件丢失.具体表现可能是anaconda prompt 找不到,conda命令无效等问题(已经加了系统变量), 我自己的问题发现是Scripts安装包总是不全,因为当时是初学,干脆就用了miniconda来暂时代替,也可以通过miniconda安装,比较快可以满足初学需要. 进度需要,现在安装anaconda,一开始没有清理垃圾页面,同时从两个源下载,就出现了下图这种问题,打不开,而且…
1.指定GPU运算 如果安装的是GPU版本,在运行的过程中TensorFlow能够自动检测.如果检测到GPU,TensorFlow会尽可能的利用找到的第一个GPU来执行操作. 如果机器上有超过一个可用的GPU,除了第一个之外的其他的GPU默认是不参与计算的.为了让TensorFlow使用这些GPU,必须将OP明确指派给他们执行.with......device语句能够用来指派特定的CPU或者GPU执行操作: import tensorflow as tf import numpy as np w…
TensorFlow指定CPU和GPU方法 TensorFlow 支持 CPU 和 GPU.它也支持分布式计算.可以在一个或多个计算机系统的多个设备上使用 TensorFlow. TensorFlow 将支持的 CPU 设备命名为"/device:CPU:0"(或"/cpu:0"),第 i 个 GPU 设备命名为"/device:GPU:I"(或"/gpu:I"). 如前所述,GPU 比 CPU 要快得多,因为它们有许多小的内…
Intel 2018架构日详解:新CPU&新GPU齐公布 牙膏时代有望明年结束 北京时间12月12日晚,Intel在圣克拉拉举办了架构日活动.在五个小时的演讲中,Intel揭开了2021年CPU架构路线图.下一代核心显卡.图形业务的未来.全新3D封装技术,甚至部分2019年处理器新架构的面纱. 访问购买页面: 英特尔旗舰店 姗姗来迟的消费级CPU路线图 近一段时间以来,业界一直非常期待看到Intel未来的架构路线图,但自Skylake以来却一直处于犹抱琵琶半遮面的状态.最近几个月Intel简单公…
本文来自计算机体系结构专家王逵.他认为,“摩尔定律结束之后,性能提升一万倍”不会是科幻,而是发生在我们眼前的事实.   2008年,<三体2:黑暗森林>里写到:   真的很难,你冬眠后不久,就有六个新一代超级计算机大型研究项目同时开始,其中三个是传统结构的,一个是非冯结构的,另外两个分别是量子和生物分子计算机研究项目.但两年后,这六个项目的首席科学家都对我说,我们要的计算能力根本不可能实现.量子计算机项目是最先中断的,现有的物理理论无法提供足够的支持,研究撞到了智子的墙壁上.紧接着生物分子计算…
区别于其他入门教程的"手把手式",本文更强调"因"而非"果".我之所以加上"通用"字样,是因为在你了解了这个开发环境之后,那些很low的错误你就不会犯了. 大家都知道深度学习涉及到大量的模型.算法,看着那些乱糟糟的公式符号,心中一定是"WTF".我想说的是,这些你都不要管,所谓车到山前必有路. 所需安装包 通常以我的习惯是以最简单的方式来接触一门新的技术,并且尽量抛弃新的(边缘)技术的介入,如果因为一些其他…
http://blog.csdn.net/jerr__y/article/details/53695567 前言:本文主要介绍如何在 ubuntu 系统中配置 GPU 版本的 tensorflow 环境.主要包括: - cuda 安装 - cudnn 安装 - tensorflow 安装 - keras 安装 其中,cuda 安装这部分是最重要的,cuda 安装好了以后,不管是 tensorflow 还是其他的深度学习框架都可以轻松地进行配置. 我的环境: Ubuntu14.04 + TITAN…
导读: CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景.CPU需要很强的通用性来处理各种不同的数据类型,而GPU面对的则是类型高度统一的.相互无依赖的大规模数据和不需要被打断的纯净的计算环境. “为什么现在更多需要用的是 GPU 而不是 CPU,比如挖矿甚至破解密码? ” 以下是比较准确靠谱的回答: 1.现在更多被需要的依然是CPU,只是GPU在大规模并发计算中体现出其一技之长所以应用范围逐渐变得广泛,并成为近些年的热点话题之一. 为什么二者会有如此的不同…
视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 首先安装pydot conda install pydot 会自动安装graphviz 如果出现TypeError: softmax() got an unexpected keyword argument 'axis' 错误,可降级keras或者用本文代码标黄的部分解决 切换cpu和gpu运算 https://www…