最小生成树(Kruskal Prim)】的更多相关文章

题意: 输入n,然后接下来有n-1行表示边的加边的权值情况.如A 2 B 12 I 25 表示A有两个邻点,B和I,A-B权值是12,A-I权值是25.求连接这棵树的最小权值. 思路: 一开始是在做莫队然后发现没学过最小生成树,就跑过来做模板题了... Kruskal的使用过程:先按权值大小排序,然后用并查集判断是否能加这条边 Kruskal详解博客:[贪心法求解最小生成树之Kruskal算法详细分析]---Greedy Algorithm for MST 考试周还在敲代码...我... upd…
最小生成树的性质 MST性质:设G = (V,E)是连通带权图,U是V的真子集.如果(u,v)∈E,且u∈U,v∈V-U,且在所有这样的边中, (u,v)的权c[u][v]最小,那么一定存在G的一棵最小生成树,(u,v)为其中一条边. 构造最小生成树,要解决以下两个问题: (1).尽可能选取权值小的边,但不能构成回路(也就是环). (2).选取n-1条恰当的边以连接网的n个顶点. Prim算法的思想: 设G = (V,E)是连通带权图,V = {1,2,…,n}.先任选一点(一般选第一个点),首…
一.最小生成树定义:  从不同顶点出发或搜索次序不同,可得到不同的生成树  生成树的权:对连通网络来说,边附上权,生成树也带权,我们把生成树各边的权值总和称为生成树的权  最小代价生成树:在一个连通网的所有生成树中, 各边的代价之和最小的那棵生成树称为该连通网的最小代价生成树(Minimum Cost Spanning Tree),简称为最小生成树(MST). 二.最小生成树prim算法 算法思路:step1:假设N=(V,{E})是连通网,TE是N上最小生成树中边的集合.算法从U={u0}(u…
1.Prim 算法 以某顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树. 2.Kruskal 算法 直接寻找最小权值的边来构建最小生成树. 比较: Kruskal 算法主要是针对边来展开,边数少时效率会非常高,所以对于稀疏图有很大的优势. Prim 算法针对顶点展开,对于稠密图,即边数非常多的情况下会更好. 具体代码如下: /* Graph.h头文件 */ /*包含图的建立:图的深度优先遍历.图的广度优先遍历*/ /*包含图的最小生成树:Prim 算法.Kruskal 算法*/ #inc…
在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权值,若要以上图来构建最小生成树.结果应该如下所示: 这样构建的最小生成树的权值总和最小,为17 在构建最小生成树中,一般有两种算法,prim算法和kruskal算法 在prim算法中,通过加入最小邻接边的方法来建立最小生成树算法.首先构造一个零图,在选一个初始顶点加入到新集合中,然后分别在原先的顶点…
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以把边上的权值解释为线路的造价.则最小生成树表示使其造价最小的生成树. 构造网的最小生成树必须解决下面两个问题: 1.尽可能选取权值小的边,但不能构成回路: 2.选取n-1条恰当的边以连通n个顶点: MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集.若(u,v)是一条具有最小权值的…
最小生成树(prim和kruskal) 最小生成树的最优子结构性质 设一个最小生成树是T.如果选出一个T中的一条边,分裂成的两个树T1,T2依然是它们的点集组成的最小生成树.这可以用反证法来证.反着来推可以得出:如果有两个最小生成树T1,T2,将它们用它们之间的最短边连接起来,所得到的还是最小生成树.这个性质在关于(最小)生成树的状压dp里可以用. prim算法 prim是在当前的最小生成树基础上,选择一条最短边作为新的最小生成树.将新加入的点看做一个最小生成树即可.用堆来加速的话,时间复杂度是…
一.最小生成树的定义 一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边. 在一个网的所有生成树中,权值总和最小的生成树称为最小代价生成树(Minimum Cost Spanning Tree),简称为最小生成树. 构造最小生成树的准则有以下3条: 只能使用该图中的边构造最小生成树 当且仅当使用n-1条边来连接图中的n个顶点 不能使用产生回路的边 对比两个算法,Kruskal算法主要是针对边来展开,边数少时效率会非常高,所以对于稀疏图有很大的优势:而P…
最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个无向连通图都会拥有至少一个生成树. 而在无向连通图中,我们让每一个边都拥有一个边权(就是每个边代表一个值). 而我们在有边权的无向连通图中构造一个生成树,使得这个生成树所用的边的边权之和最小.这个生成树就叫这个无向连通图的最小生成树! 上图这个最小生成树的边权之和为9,是所有生成树中边权之和最小的.…
MST在前面学习了Kruskal算法,还有一种算法叫做Prim的.这两者的区别是Prim算法适合稠密图,比如说鸟巢这种几乎所有点都有相连的图.其时间复杂度为O(n^2),其时间复杂度与边的数目无关:而kruskal算法的时间复杂度为O(eloge),跟边的数目有关,适合稀疏图. prim算法 基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合.算法从U={u0}(u0∈V),TE={ 空集 }开始.重复执行下列操作: 1.在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最…