深度学习系列之CNN核心内容】的更多相关文章

导读 怎么样来理解近期异常火热的深度学习网络?深度学习有什么亮点呢?答案事实上非常简答.今年十月份有幸參加了深圳高交会的中科院院士论坛.IEEE fellow汤晓欧做了一场精彩的报告,这个问题被汤大神一语道破,他说深度学习网络说白了就是一个多层的神经网络. 同20年前相比,计算机硬件性能提升非常多,有了实现处理大数据和并行运算的能力,deep learning才被又一次重视起来.这里,再反复一遍CNN的实质:CNN就是一个更深层次.具有很多其它节点的ANN网络.但与简单的ANN相比:CNN主要是…
前面几篇文章讲到了卷积神经网络CNN,但是对于它在每一层提取到的特征以及训练的过程可能还是不太明白,所以这节主要通过模型的可视化来神经网络在每一层中是如何训练的.我们知道,神经网络本身包含了一系列特征提取器,理想的feature map应该是稀疏的以及包含典型的局部信息.通过模型可视化能有一些直观的认识并帮助我们调试模型,比如:feature map与原图很接近,说明它没有学到什么特征:或者它几乎是一个纯色的图,说明它太过稀疏,可能是我们feature map数太多了(feature_map数太…
[深度学习系列3] Mariana CNN并行框架与图像识别 本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框架. 将深度卷积神经网络(Convolutional Neural Networks, 简称CNNs)用于图像识别在研究领域吸引着越来越多目光.由于卷积神经网络结构非常适合模型并行的训练,因此以模型并行+数据并行的方式来加速Deep CNNs训练,可预期取得较大收获.Deep CNNs的单机多GPU…
这是<GPU学习深度学习>系列文章的第三篇,主要是接着上一讲提到的如何自己构建深度神经网络框架中的功能模块,进一步详细介绍 Tensorflow 中 Keras 工具包提供的几种深度神经网络模块.本系列文章主要介绍如何使用 腾讯云GPU服务器 进行深度学习运算,前面主要介绍原理部分,后期则以实践为主. 往期内容: GPU 学习深度学习系列Part 1:传统机器学习的回顾 GPU 学习深度学习系列Part 2:Tensorflow 简明原理 上一讲中,我们用最简单的代码,实现了最简单的深度学习框…
[深度学习系列2]Mariana DNN多GPU数据并行框架  本文是腾讯深度学习系列文章的第二篇,聚焦于腾讯深度学习平台Mariana中深度神经网络DNN的多GPU数据并行框架.   深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点[1][2],产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能力,适合于加速深度神经网络训练.DNN的单机多GPU数据并行框架是Mariana的一部分,Marian…
PaddlePaddle垃圾邮件处理实战(二) 前文回顾   在上篇文章中我们讲了如何用支持向量机对垃圾邮件进行分类,auc为73.3%,本篇讲继续讲如何用PaddlePaddle实现邮件分类,将深度学习方法运用到文本分类中. 构建网络模型   用PaddlePaddle来构建网络模型其实很简单,首先得明确paddlepaddle的输入数据的格式要求,知道如何构建网络模型,以及如何训练.关于输入数据的预处理等可以参考我之前写的这篇文章[深度学习系列]PaddlePaddle之数据预处理.首先我们…
前面介绍过了Tensorflow的基本概念,比如如何使用tensorboard查看计算图.本篇则着重介绍和整理下Constant相关的内容. 基于TensorFlow的深度学习系列教程 1--Hello World! 常量的概念 在tensorflow中,数据分为几种类型: 常量Constant.变量Variable.占位符Placeholder.其中: 常量:用于存储一些不变的数值,在计算图创建的时候,调用初始化方法时,直接保存在计算图中 变量:模型训练的参数,比如全连接里面的W和bias 占…
转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 GPU 学习深度学习>系列文章的第二篇,主要介绍了 Tensorflow 的原理,以及如何用最简单的Python代码进行功能实现.本系列文章主要介绍如何使用 腾讯云GPU服务器 进行深度学习运算,前面主要介绍原理部分,后期则以实践为主. 往期内容: 使用腾讯云 GPU 学习深度学习系列之一:传统机器学…
最近除了工作以外,业余在参加Paddle的AI比赛,在用Paddle训练的过程中遇到了一些问题,并找到了解决方法,跟大家分享一下: PaddlePaddle的Anaconda的兼容问题 之前我是在服务器上安装的PaddlePaddle的gpu版本,我想把BROAD数据拷贝到服务器上面,结果发现我们服务器的22端口没开,不能用scp传上去,非常郁闷,只能在本地训练.本机mac的显卡是A卡,所以只能装cpu版本的,安装完以后,我发现运行一下程序的时候报错了: import paddle.v2 as…
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识      为什么要用神经网络? 特征提取的高效性.…