3364 Lanterns (异或方程组高斯消元)】的更多相关文章

基本思路.首先构造一个n*(m+1)的矩阵,同时标记一个行数row,row从零开始,然后找出每一列第一个非零的数,和第row行互换, 然后对row到n行,异或运算.最终的结果为2^(m-row) #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int array[55][55],n,m,h[55][55]; int main() { int i,j,k,t,a,q…
300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案. 合法方案的每个数的质因数的个数的奇偶值异或起来为0. 比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3的个数是奇数为1),3的对应奇偶值为01,于是12*3是完全平方数. 然后异或方程组就是: a11x1+a12x2+...+a1nxn=0 a21x1+a22x2+...+a2nxn=0 ... an1x1+an2x2+...+annxn=0 aij:第i个质数(2000内有303个质数)在第j个数…
ccpc网赛卡住的一道题 蓝书上的原题 但是当时没看过蓝书 今天又找出来看看 其实也不是特别懂 但比以前是了解了一点了 主要还是要想到构造异或方程组 异或方程组的消元只需要xor就好搞了 数学真的是硬伤啊…… (链接:蓝书161页详细讲解 我也在看…… #include<cstdio> #include<iostream> #include<algorithm> #include<cmath> #include<cstring> #include…
题目大意:给出n个数字a[],将a[]分解为质因子(保证分解所得的质因子不大于2000),任选一个或多个质因子,使其乘积为完全平方数.求其方法数. 学长学姐们比赛时做的,当时我一脸懵逼的不会搞……所以第二天上午花了一上午学习了一下线性代数. 题目思路: 任选一个或多个质因子,起乘积为完全数m,因为组成它的均为素数,假设组成m的素数的种类为n,那么这n类素数中每类素数的个数应为偶数. 可设:a[i][j]=0代表第i种素数可在a[j]中分离出的个数为偶数,a[i][j]=1代表第i种素数可在a[j…
题目链接 中文题,高斯消元模板题. #include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #include <queue> #include <vector> #include <map> #include <ctime> using namespace std;…
参考自:http://www.cnblogs.com/flipped/p/5771492.html 自己做的时候不知道如何求种数.看了题解,感觉思路灰常巧妙.同时也感觉这是一道好题. 精髓在于转化为线性方程组. 求素数的思想,和高斯消元需要多加熟悉. 300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案. 合法方案的每个数的质因数的个数的奇偶值异或起来为0. 比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3的个数是奇数为1),3的对应奇偶值为01,于是1…
首先,我们发现,因为是无向图,所以相连的点之间是有"依赖性"的,所以不能直接用dp求解. 因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望,因为从1到n和从n到1一样,所以选择倒着推,即, if(deg[e[i].va]==0) \[ x[u]=\sum_{v}^{v\subset son(u)}\frac{x[v]}{deg[i]} \] else \[ x[u]=\sum_{v}^{v\subset son(u)}\frac{1-x[v]}…
纪念首道期望题(虽说绿豆蛙的归宿才是,但是我打的深搜总觉得不正规). 我们求出每条边的期望经过次数,然后排序,经过多的序号小,经过少的序号大,这样就可以保证最后的值最小. 对于每一条边的期望经过次数,其实是从它起点和终点来的.设f[]为每个点经过的期望,out[]为每个点的出度 设一条边,起点为u,终点为v.那么它的期望经过次数为f[u]/out[u]+f[v]/out[v] 这样问题就转化为求每个点的期望经过次数了 对于起点,一开始经过一次,也可能从其他点走过来. f[1]=1+sigma(f…
题意:有n个灯和m个开关,每个开关控制数个灯的状态改变,给出k条询问,问使灯的状态变为询问中的状态有多少种发法. 析:同余高斯消元法,模板题,将每个开关控制每个灯列成行列式,最终状态是结果列,同余高斯消元,如果无解就是0,否则结果就是1<<(自由变元的个数); 代码如下: #include<stdio.h> #include<algorithm> #include<iostream> #include<string.h> #include<…
http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #include<cstdio> #include<algorithm> using namespace std; #define N 36 int n; bool a[N][N]; bool x[N]; int ans=1e9; void gauss() { int j; ;i<n;…