题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C)  statement; 问循环的次数,若"永不停息"(←_←)*,就输出"FOREVER". 解法:用拓展欧几里德方法求出gcd最大公因数,再利用同余性质转化,求同余方程,或者不定方程.其中题目可化为 a+cx=b(mod 2^k) → cx=b-a(mod 2^k),求最小正整数解.也是求解同余方程. 先将方程化为一般形式:ax=…
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B-1,P为模数9973,那么 B*B-1=1(mod P)  →  把 B-1 看成 x ,就是 Bx+Py=1.也就是求不定方程的解了.x 就是 B-1,答案就是 ((A%9973)*(x%9973))%9973 . P.S.关于拓展欧几里德求解不定方程的具体解释请见--[poj 2115]C L…
题意:Elina看一本刘汝佳的书(O_O*),里面介绍了一种奇怪的方法表示一个非负整数 m .也就是有 k 对 ( ai , ri ) 可以这样表示--m%ai=ri.问 m 的最小值. 解法:拓展欧几里德求解同余方程组的最小非负整数解.(感觉挺不容易的......+_+@) 先看前2个关系式:                       m%a1=r1 和 m%a2=r2 →                                                           …
题意:Kiki 有 X 个硬币,已知 N 组这样的信息:X%x=Ai , X/x=Mi (x未知).问满足这些条件的最小的硬币数,也就是最小的正整数 X. 解法:转化一下题意就是 拓展欧几里德求解同余方程组了.我们可以得到 N 个方程:Mi*x+Ai=X.一些解释请看下面的代码. 1 #include<cstdio> 2 #include<cstdlib> 3 #include<cstring> 4 #include<iostream> 5 using na…
题意:已知2只青蛙的起始位置 a,b 和跳跃一次的距离 m,n,现在它们沿着一条长度为 l 的纬线(圈)向相同方向跳跃.问它们何时能相遇?(好有聊的青蛙 (΄◞ิ౪◟ิ‵) *)永不相遇就输出"Impossible".(蠢得可怜 -_-!) 解法:用拓展欧几里德求同余方程的最小正整数解.(a+mx)-(b+nx)=k*l (k表示圈数) → (m-n)x=k*l+b-a → (m-n)x=b-a(mod l).当然其实=(b-a)%l 更准确,但反正都是模,也没有关系啦.于是就像上题一…
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时,变量variable则只在0~15之间循环变化. s.扩展欧几里德求解模线性方程(线性同余方程). 设循环次数为x, 1.(A+C*x)mod 2^k=B. --> C*x=B-A(mod 2^k). (怎么变来的?) 2.C*x=B-A(mod 2^k). --> C*x+(2^k)*y=B-…
题目:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i], - (0 < a[i] <= 10). 解法:先同上题一样用拓展欧几里德求出同余方程组的最后一个方程 X=ax+b,再调整 x 来求得 X 的解的个数.一些解释请看下面的代码. 注意--每次联立方程后求最小正整数解,可以提高代码速度. 1 #include<cstdio> 2 #i…
Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != B; variable += C) statement; I.e., a loop which starts by setting variable to value A and <= x < 2k) modulo 2k. Input The input consists…
题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod(2^k)的最小解.(真搞不懂为什么训练的时候好多人把青蛙的约会都给做出来了,这题却一直做不出来.. . . . 这两道不都是推公式然后变形吗. .... ) 代码例如以下: #include <iostream> #include <cstdio> #include <strin…
POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A (因为要满足B大于A)即是Exgcd的标准式子了 代码 #include<iostream> #include<cstdio> using namespace std; #define ll long long ll A,B,C,T,k; int gcd(ll a,ll b) { i…