对Word2Vec的理解】的更多相关文章

对word2vec的理解及资料整理 无他,在网上看到好多对word2vec的介绍,当然也有写的比较认真的,但是自己学习过程中还是看了好多才明白,这里按照自己整理梳理一下资料,形成提纲以便学习. 介绍较好的文章: https://www.cnblogs.com/iloveai/p/word2vec.html http://www.dataguru.cn/article-13488-1.html http://mccormickml.com/2016/04/19/word2vec-tutorial-…
之前写了对word2vec的一些简单理解,实践过程中需要对其参数有较深的了解: class gensim.models.word2vec.Word2Vec(sentences=None,size=100,alpha=0.025,window=5, min_count=5, max_vocab_size=None, sample=0.001,seed=1, workers=3,min_alpha=0.0001, sg=0, hs=0, negative=5, cbow_mean=1, hashfx…
在学习LSTM的时候,了解了word2vec,简单的理解就是把词变成向量.看了很多书,也搜索了很多博客,大多数都是在word2vec的实现原理.数学公式,和一堆怎么样重新写一个word2vec的python代码.对于我这种数学弱鸟级别的人来说,这显然是没有什么意义的,更别说价值了.我所需要的就是理解几个简单的问题: 1.什么是word2vec? 2.为什么是word2vec? 3.word2vec能干什么? 4.怎么用word2vec来达到目的? 最起码目前我能理解这几个问题,以及足够了,至于那…
1. word embedding 在NLP领域,首先要把文字或者语言转化为计算机能处理的形式.一般来说计算机只能处理数值型的数据,所以,在NLP的开始,有一个很重要的工作,就是将文字转化为数字,把这个过程称为 word embedding. word embedding即词嵌入,就是将一个词或者特征转化为一个向量.       词嵌入一般有两种方式:最简单和原始的方式one-hot:word2vec方式.下面我们简单回顾一下one-hot方式,重点讲解word2vec词嵌入方式. 2. one…
深度学习word2vec笔记之基础篇 https://blog.csdn.net/mytestmy/article/details/26961315 深度学习word2vec笔记之算法篇 https://blog.csdn.net/mytestmy/article/details/26969149 深度学习word2vec笔记之应用篇 https://blog.csdn.net/mytestmy/article/details/38612907…
1.CBOW 模型 CBOW模型包括输入层.投影层.输出层.模型是根据上下文来预测当前词,由输入层到投影层的示意图如下: 这里是对输入层的4个上下文词向量求和得到的当前词向量,实际应用中,上下文窗口大小可以设置. 输出层是一颗哈夫曼树,从向量W(t)到哈夫曼树的转化过程是这样的:以训练语料中出现的词当叶子结点,以各词在语料中出现的次数当权值来构造,这样不仅可以保证出现频率更高的词可以被更快地搜索到,而且为使用Hierarchical softmax铺平了道路. 对于词典中的任意词w,必然存在一条…
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/peghoty/p/3857839.html 2.刘建平:word2vec原理:https://www.cnblogs.com/pinard/p/7160330.html 3.吴恩达:<序列模型:自然语言处理与词嵌入> 理论看完了就要实战了,通过实战能加深对word2vec的理解.目前用word2vec算法…
关于word2vec的理解,推荐文章https://www.cnblogs.com/guoyaohua/p/9240336.html 代码参考https://github.com/eecrazy/word2vec_chinese_annotation 我在其基础上修改了错误的部分,并添加了一些注释. 代码在jupyter notebook下运行. from __future__ import print_function #表示不管哪个python版本,使用最新的print语法 import c…
Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 目录 Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 0x00 摘要 0x01 背景概念 1.1 词向量基础 1.1.1 独热编码 1.1.2 分布式表示 1.2 CBOW & Skip-Gram 1.2.1 CBOW 1.2.2 Skip-gram 1.3 Word2vec 1.3.1 Word2vec基本思想 1.3.2 Hierarchical Softmax基本思路 1.3.3 Hierarchi…
Alink漫谈(十七) :Word2Vec源码分析 之 迭代训练 目录 Alink漫谈(十七) :Word2Vec源码分析 之 迭代训练 0x00 摘要 0x01 前文回顾 1.1 上文总体流程图 1.2 回顾霍夫曼树 1.2.1 变量定义 1.2.2 为何要引入霍夫曼树 0x02 训练 2.1 训练流程 2.2 生成训练模型 2.3 初始化词典&缓冲 2.4 更新模型UpdateModel 2.5 计算更新 2.5.1 sigmoid函数值近似计算 2.5.2 窗口及上下文 2.5.3 训练…