隐语义模型LFM】的更多相关文章

主要介绍 隐语义模型 LFM(latent factor model). 隐语义模型最早在文本挖掘领域被提出,用于找到文本的隐含语义,相关名词有 LSI.pLSA.LDA 等.在推荐领域,隐语义模型也有着举足轻重的地位.下述的实验设计见 推荐系统–用户行为和实验设计 基本思想 核心思想: 通过隐含特征(latent factor)联系用户兴趣和物品.具体来说,就是对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品.基于兴趣分类的方法需要解决3个问题: 如何对物品进行分类? 如何…
LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣相似的用户,之后再根据计算出来的用户喜欢的物品给目标用户推荐物品. 而ItemCF,我们可以根据目标用户喜欢的物品,寻找和这些物品相似的物品,再推荐给用户. 我们还有一种方法,先对所有的物品进行分类,再根据用户的兴趣分类给用户推荐该分类中的物品,LFM就是用来实现这种方法. 如果要实现最后一种方法,…
LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣相似的用户,之后再根据计算出来的用户喜欢的物品给目标用户推荐物品. 而ItemCF,我们可以根据目标用户喜欢的物品,寻找和这些物品相似的物品,再推荐给用户. 我们还有一种方法,先对所有的物品进行分类,再根据用户的兴趣分类给用户推荐该分类中的物品,LFM就是用来实现这种方法. 如果要实现最后一种方法,…
  隐语义模型是通过隐含特征,联系用户和物品,基于用户的特征对物品进行自动聚类,然后在用户感兴趣的类中选择物品推荐给用户. 对于推荐系统,常用的算法: USER-CF:给用户推荐和他兴趣相似的用户喜欢的物品 ITEM-CF:给用户推荐他们感兴趣物品的相似物品 LFM:得到用户感兴趣的分类,从该分类中挑选物品推荐给用户 对于LFM,要做的工作有: 1.对物品进行分类,这里是模糊分类,也就是得出每个物品在每个类中的权重,并不是说一个物品就是属于一个类 2.确定用户感兴趣的类,这里要计算用户对所有类的…
对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品.总结一下,这个基于兴趣分类的方法大概需要解决3个问题. 如何给物品进行分类? 如何确定用户对哪些类的物品感兴趣,以及感兴趣的程度? 对于一个给定的类.选择哪些属于这个类的物品推荐给用户,以及如何确定这些物品在一个类中的权重? 隐含语义分析技术采用基于用户行为统计的自动聚类,较好地解决了上面提出的问题. 隐含语义分析技术的分类来自对用户行为的统计,代表了用户对物品分类的看法.隐含语义分析技术和ItemCF在物品分类方面的思想类似…
最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic Model其实都属于隐含语义分析技术,是一类概念,他们在本质上是相通的,都是找出潜在的主题或分类.这些技术一开始都是在文本挖掘领域中提出来的,近 些年它们也被不断应用到其他领域中,并得到了不错的应用效果.比如,在推荐系统中它能够基于用户的行为对item进行自动聚类,也就是把item划分到不 同类别/主题,这些…
最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic Model其实都属于隐含语义分析技术,是一类概念,他们在本质上是相通的,都是找出潜在的主题或分类.这些技术一开始都是在文本挖掘领域中提出来的,近些年它们也被不断应用到其他领域中,并得到了不错的应用效果.比如,在推荐系统中它能够基于用户的行为对item进行自动聚类,也就是把item划分到不同类别/主题,这些主题…
http://blog.csdn.net/pipisorry/article/details/49256457 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之隐语义模型latent semantic analysis {博客内容:推荐系统构建三大方法:基于内容的推荐content-based,协同过滤collaborative filtering,隐语义模型(LFM…
隐语义模型: 物品       表示为长度为k的向量q(每个分量都表示  物品具有某个特征的程度) 用户兴趣 表示为长度为k的向量p(每个分量都表示  用户对某个特征的喜好程度) 用户u对物品i的兴趣可以表示为 其损失函数定义为-        使用随机梯度下降,获得参数p,q   负样本生成: 对于只有正反馈信息(用户收藏了,关注了xxx)的数据集,需要生成负样本,原则如下 1.生成的负样本要和正样本数量相当 2.物品越热门(用户没有收藏该物品),越有可能是负样本   实现: # coding…