K-modes聚类算法MATLAB】的更多相关文章

密度峰值聚类算法MATLAB程序 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 密度峰值聚类算法简介见:[转] 密度峰值聚类算法(DPC) 数据见:MATLAB中“fitgmdist”的用法及其GMM聚类算法,保存为gauss_data.txt文件,数据最后一列是类标签. 1. MATLAB程序 clear all close all %% 从文件中读取数据 data_load=dlmread('gauss_data.txt'); [num,dim]=…
顾名思义,k均值聚类是一种对数据进行聚类的技术,即将数据分割成指定数量的几个类,揭示数据的内在性质及规律. 我们知道,在机器学习中,有三种不同的学习模式:监督学习.无监督学习和强化学习: 监督学习,也称为有导师学习,网络输入包括数据和相应的输出标签信息.例如,在 MNIST 数据集中,手写数字的每个图像都有一个标签,代表图片中的数字值. 强化学习,也称为评价学习,不给网络提供期望的输出,但空间会提供给出一个奖惩的反馈,当输出正确时,给网络奖励,当输出错误时就惩罚网络. 无监督学习,也称为无导师学…
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心.聚类中心以及分配给它们的对象就代表一个聚类.每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算.这个过程将不断重复直到满足某个终止条件.终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小.…
一:一般K均值聚类算法实现 (一)导入数据 import numpy as np import matplotlib.pyplot as plt def loadDataSet(filename): dataSet = np.loadtxt(filename) return dataSet (二)计算两个向量之间的距离 def distEclud(vecA,vecB): #计算两个向量之间距离 return np.sqrt(np.sum(np.power(vecA-vecB,))) (三)随机初…
1.K-均值聚类法的概述    之前在参加数学建模的过程中用到过这种聚类方法,但是当时只是简单知道了在matlab中如何调用工具箱进行聚类,并不是特别清楚它的原理.最近因为在学模式识别,又重新接触了这种聚类算法,所以便仔细地研究了一下它的原理.弄懂了之后就自己手工用matlab编程实现了,最后的结果还不错,嘿嘿~~~   简单来说,K-均值聚类就是在给定了一组样本(x1, x2, ...xn) (xi, i = 1, 2, ... n均是向量) 之后,假设要将其聚为 m(<n) 类,可以按照如下…
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登后,陆陆续续收到本科生.研究生还有博士生的来信和短信微信等,表示了对论文的兴趣以及寻求算法的效果和实现细节,所以,我也就通过邮件或者短信微信来回信,但是有时候也会忘记回复. 另外一个原因也是时间久了,我对于论文以及改进的算法的记忆也越来越模糊,或者那天无意间把代码遗失在哪个角落,真的很难想象我还会全…
国内博客,上介绍实现的K-medodis方法为: 与K-means算法类似.只是距离选择与聚类中心选择不同. 距离为曼哈顿距离 聚类中心选择为:依次把一个聚类中的每一个点当作当前类的聚类中心,求出代价值最小的点当作当前聚类中心. 维基百科上,实现的方法为PAM算法. 分成K类,把每个点都尝试当作聚类中心,并求出当前组合聚类中心点组合的代价值.找到总最小代价值的中心点. 国内实现: kMedoids.m代码: function [cx,cost] = kMedoids(K,data,num) %…
K-modes算法主要用于分类数据,如 国籍,性别等特征. 距离使用汉明距离,即有多少对应特征不同则距离为几. 中心点计算为,选择众数作为中心点. 主要功能: 随机初始化聚类中心,计算聚类. 选择每次聚类次数,选择最佳聚类初始化. kmodes.m代码 function [cx,cost] = kmodes(K,data,num) % 生成将data聚成K类的最佳聚类 % K为聚类数目,data为数据集,num为随机初始化次数 [cx,cost] = kmodes1(K,data); :num…
以K-means算法为例,实现了如下功能 自动生成符合高斯分布的数据,函数名为gaussianSample.m 实现多次随机初始化聚类中心,以找到指定聚类数目的最优聚类.函数名myKmeans.m 自动寻找最佳聚类数目,函数名称besKmeans.m,并绘制了拐点图(L图) gaussianSample.m function [data] = gaussianSample(n,m,mu,sigma,sigma1) % 生成n个符合多元高斯分布的样本 % data = gaussianSample…
% ========================================================================= % 算 法 名 称: Spectral Clustering Algorithm % 编 码 作 者: Lee Wen-Tsao % 编 码 邮 箱: liwenchao36@163.com % 输 入 参 数: % W ---> 邻接矩阵 % k ---> 簇数目 % t ---> 拉普拉斯矩阵归一化处理类型 % ===========…