1.定时器 指定n秒后,执行任务 from threading import Timer,current_thread import os def hello(): print("%s hello, world"%os.getpid()) print("%s hello, world"%current_thread().name) t = Timer(3, hello) t.start() # after 1 seconds, "hello, world&…
Python进阶----异步同步,阻塞非阻塞,线程池(进程池)的异步+回调机制实行并发, 线程队列(Queue, LifoQueue,PriorityQueue), 事件Event,线程的三个状态(就绪,挂起,运行) ,***协程概念,yield模拟并发(有缺陷),Greenlet模块(手动切换),Gevent(协程并发) 一丶同步,异步 同步:    所谓同步就是一个任务需要依赖另一个任务时,只有被依赖任务执行完毕之后,依赖的任务才会完成.这是可靠的任务序列.要么都成功,要么失败,两个任务的状…
Python 3 进程池与回调函数 一.进程池 在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间.多进程是实现并发的手段之一,需要注意的问题是: 很明显需要并发执行的任务通常要远大于核数 一个操作系统不可能无限开启进程,通常有几个核就开几个进程 进程开启过多,效率反而会下降(开启进程是需要占用系统资源的,而且开启多余核数目的进程也无法做到并行) 例如当被操作对象数目不大时,可以直接利用multiprocessing中的Proces…
一.node单线程异步的缺陷: 单线程异步的优点自然不必多说,node之所以能够如此快的兴起,其单线程异步回调机制相比于传统同步执行编程语言的优势便是原因之一.然而,开发一个node程序,其缺陷也是不可忽视的: 二.node解决方案: 1.node实现访问和错误日志: morgan是一个http请求处理的中间件 2.node cluster模块支持开启多个工作进程充分调用cpu资源,也能防止bug使node进程奔溃: app.js修改: 新建cluster.js: 命令行执行: 注:superv…
###############   进程池    ############## """ 进程池的概念 为什么会有进程池? 1,因为每次开启一个进程,都需要创建一个内存空间,这是耗时的 2,进程过多,操作调度也会耗时, 所以会有非常大的性能问题, 所以我们不会让进程太大,我们会设计一个进程池, 进程池: 1,Python中先创建一个进程的池子, 2,这个进程池能存放多少个进程,比如有5个进程, 3,先把这些进程创建好, 4,比如有50个任务他们到进程池里面去找进程,找到的就执行…
跨平台python异步回调机制实现和使用方法 这篇文章主要介绍了python异步回调机制的实现方法,提供了使用方法代码 1 将下面代码拷贝到一个文件,命名为asyncore.py 代码如下: import socket import select import sys def ds_asyncore(addr,callback,timeout=5):     s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)     s.connect(addr…
1. 线程 queue queue is especially useful in threaded programming when information must be exchanged safely between multiple threads. queue 三种方法 : class queue.Queue(maxsize=0) #队列:先进先出 import queue q=queue.Queue() q.put('first') q.put('second') q.put('t…
GIL 1.什么是GIL(这是Cpython解释器) GIL本质就是一把互斥锁,既然是互斥锁,原理都是一样的,都是让多个并发线程同一时间只能有一个执行 即:有了GIL的存在,同一进程内的多个线程同一时刻只能有一个在运行,意味着Cpython中一个进程下的多个线程无法实现并行,所以就无法利用多核优势,但不影响并发的实现 GIL可以被比喻成执行权限,同一进程下的所有线程,想要执行都需要先抢执行权限 2.为何要有GIL 因为Cpython解释器自带垃圾回收机制不是线程安全的 3.如何用 GIL vs…
进程queue: from multiprocessing import Queue,Process def func(qq): qq.put('function:我要放数据,给你来取...') if __name__ == '__main__': q =Queue() p =Process(target=func,args=(q,)) #需要把实例化q放到子进程,才能进行父进程与子进程之间队列交互 p.start() print(q.get()) p.join() 线程queue import…
一.数据共享 1.进程间的通信应该尽量避免共享数据的方式 2.进程间的数据是独立的,可以借助队列或管道实现通信,二者都是基于消息传递的. 虽然进程间数据独立,但可以用过Manager实现数据共享,事实上Manager的功能远不止于此. 命令就是一个程序,按回车就会执行(这个只是在windows情况下) tasklist 查看进程 tasklist | findstr pycharm #(findstr是进行过滤的),|就是管道(tasklist执行的内容就放到管道里面了, 管道后面的findst…
一.数据共享 1.进程间的通信应该尽量避免共享数据的方式 2.进程间的数据是独立的,可以借助队列或管道实现通信,二者都是基于消息传递的. 虽然进程间数据独立,但可以用过Manager实现数据共享,事实上Manager的功能远不止于此. ? 1 2 3 4 命令就是一个程序,按回车就会执行(这个只是在windows情况下) tasklist 查看进程 tasklist | findstr  pycharm   #(findstr是进行过滤的),|就是管道(tasklist执行的内容就放到管道里面了…
一.数据共享 尽量避免共享数据的方式 可以借助队列或管道实现通信,二者都是基于消息传递的. 虽然进程间数据独立,但可以用过Manager实现数据共享,事实上Manager的功能远不止于此. 命令就是一个程序,按回车就会执行(这个只是在windows情况下) tasklist 查看进程 |就是管道(tasklist执行的内容就放到管道里面了, 管道后面的findstr pycharm就接收了) 管道和队列 Manager,Process,Lock work(dic,mutex): mutex.ac…
一.数据共享 1.进程间的通信应该尽量避免共享数据的方式 2.进程间的数据是独立的,可以借助队列或管道实现通信,二者都是基于消息传递的. 虽然进程间数据独立,但可以用过Manager实现数据共享,事实上Manager的功能远不止于此. 1 2 3 4 命令就是一个程序,按回车就会执行(这个只是在windows情况下) tasklist 查看进程 tasklist | findstr  pycharm   #(findstr是进行过滤的),|就是管道(tasklist执行的内容就放到管道里面了,…
一.数据共享 1.进程间的通信应该尽量避免共享数据的方式 2.进程间的数据是独立的,可以借助队列或管道实现通信,二者都是基于消息传递的. 虽然进程间数据独立,但可以用过Manager实现数据共享,事实上Manager的功能远不止于此. 1 2 3 4 命令就是一个程序,按回车就会执行(这个只是在windows情况下) tasklist 查看进程 tasklist | findstr  pycharm   #(findstr是进行过滤的),|就是管道(tasklist执行的内容就放到管道里面了,…
回调(callback)在我们做工程过程中经常会使用到,今天想整理一下回调的原理和使用方法. 回调的原理可以简单理解为:A发送消息给B,B处理完后告诉A处理结果.再简单点就是A调用B,B调用A. 那么是如何实现的呢?一般而言,处理消息的类是唯一的,而发送消息的类却是各种各样的,所以一般的做法是将回调方法做成一个接口,不同的发送者去实现该接口,并且把自己的接口实现类的对象在发送消息时传递给消息处理者. (现在不太方便画图,之后再补上图) 现在以一个CS结构的示例来说明回调的过程: Client类:…
import os from multiprocessing import Pool,Process def f1(n): print('进程池里面的进程id',os.getpid()) print('>>>>',n) return n*n def call_back_func(asdf): print('>>>>>>>>>>>>>',os.getpid()) print('回调函数中的结果:',asdf…
# 使用进程池的进程爬取网页内容,使用回调函数处理数据,用到了正则表达式和re模块 import re from urllib.request import urlopen from multiprocessing import Pool def get_page(url,pattern): response=urlopen(url).read().decode('utf-8') return pattern,response # 返回正则表达式编译结果 网页内容 def parse_page(…
1.再次clear Timer定时器的作用 setTimeOut绝非是传统意义上的“sleep”功能,它做不到让主线程“熄火”指定时间,它是用来指定:某个回调在固定时间后插入执行栈!(实际执行时间略长于这个固定时间) 2.js或nodejs想"sleep"主线程怎么做? 可以自定义sleep休眠函数,原理就是 目标时间 >= 当前时间+sleepTime; 然后不断在while中tick时间.比较.直接看代码吧. function sleep(numbermsec){ let n…
如下代码: from multiprocessing import Pool def func1(n): print('in func1') return n*n def func2(nn): print('in func2') print(nn) if __name__ == "__main__": pool = Pool(5) pool.apply_async(func1, args=(10,)) pool.close() pool.join() 结果是 in func1 这是通过…
进程池与线程池.协程.协程实现TCP服务端并发.IO模型 一.进程池与线程池 1.线程池 ''' 开进程开线程都需要消耗资源,只不过两者比较的情况下线程消耗的资源比较少 在计算机能够承受范围内最大限度的利用计算机 什么是池? 在保证计算机硬件安全的情况下最大限度的利用计算机 池其实是降低了程序的运行效率,但是保证了计算机硬件的安全 (硬件的发展跟不上软件的速度) ''' from concurrent.futures import ThreadPoolExecutor import time p…
一.线程池与进程池 什么是池?简单的说就是一个容器,一个范围 在保证计算机硬件安全的情况下最大限度的充分利用计算机, 池其实是降低了程序的运行效率,但是保证了计算机硬件的安全,也是实现了一个并发的效果,现如今硬件的发展跟不上软件的更新速度 进程池与线程池 开进程开线程都需要消耗资源,只不过两者比较的情况线程消耗的资源比较少 创建进程池:multiprocess.Pool模块 导入的写法:from concurrent.futures import ThreadPoolExecutor,Proce…
# from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor # import requests # import os # import time # import random # # def get(url): # print('%s GET %s' %(os.getpid(),url)) # response=requests.get(url) # time.sleep(random.randint(1,3…
目录 1.线程队列 2.进程池和线程池 3.回调函数 4.协程:线程的具体实现 5.利用协程爬取数据 线程队列 1.线程队列的基本方法 put 存 get 取 put_nowait 存,超出了队列长度,报错 get_nowait 取,没数据的时候,直接报错 [linux windows] 线程中 put_nowait/get_nowait 都支持(区别于进程队列) 2.Queue:先进先出,后进后出 # (1) Queue """先进先出,后进后出""&q…
5.GIL vs 互斥锁(*****) 1.什么是GIL(Global Interpreter Lock) GIL是全局解释器锁,是加到解释器身上的,保护的就是解释器级别的数据 (比如垃圾回收的数据) 同一个进程内的所有线程都需要先抢到GIL锁,才能执行解释器代码 2 为什么需要GIL python 中内存管理依赖于 GC(一段用于回收内存的代码) 也需要一个线程 除了你自己开的线程 系统还有一些内置线程 就算你的代码不会去竞争解释器 内置线程也可能会竞争 所以必须加上锁 3.GIL的影响 GI…
进程池和线程池 开进程开线程都需要消耗资源,只不过两者比较的情况线程消耗的资源比较少 在计算机能够承受范围之内最大限度的利用计算机 什么是池? ​ 在保证计算机硬件安全的情况下最大限度地利用计算机 ​ 池其实是降低了程序的运行效率 但是保证了计算机硬件的安全 ​ (硬件的发展跟不上软件的速度) 线程池进程池 括号内可以传参数指定线程池内的线程个数 也可以不传 不传默认是当前cpu核数*5 ​ 提交任务的方式: 同步:提交任务之后,原地等待任务的结果,期间不做任何事 异步:提交任务后,不等待任务的…
一.进程池和线程池 当被操作对象数目不大时,我们可以手动创建几个进程和线程,十几个几十个还好,但是如果有上百个上千个.手动操作麻烦而且电脑硬件跟不上,可以会崩溃,此时进程池.线程池的功效就能发挥了.我们可以通过维护一个进程池.线程池来控制进程数目和线程数目.在保证计算机硬件安全的情况下最大限度的利用计算机,池其实是降低了程序的运行效率,但是保证了计算机硬件的安全. 注意点:在使用进程池.线程池,Pool可以提供指定数量的进程,线程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么…
目录 进程池线程池的使用***** 进程池/线程池的创建和提交回调 验证复用池子里的线程或进程 异步回调机制 通过闭包给回调函数添加额外参数(扩展) 协程*** 概念回顾(协程这里再理一下) 如何实现协程 生成器的yield 可以实现保存状态(行不通) gevent模块实现 利用gevent在单线程下实现并发(协程) I/O 模型(只放了几张图) 阻塞I/O模型 非阻塞I/O模型 多路复用I/O模型 信号驱动I/O模型 异步I/O模型 进程池线程池的使用***** 无论是开线程还是开进程都会消耗…
昨日内容回顾 GIL全局解释器锁 1.在python解释器中 才有GIL的存在(只与解释器有关) 2.GIL本质上其实也是一把互斥锁(并发变串行 牺牲效率保证安全) 3.GIL的存在 是由于Cpython解释器中的内存管理不是线程安全的 内存管理>>>垃圾回收机制 4.在python中 同一个进程下的多个线程无法实现并行的(可以并发) 验证GIL中的各种特性 1.python代码要想被运行 必须先获取到解释器 但是解释器的获取需要抢夺和释放GIL全局解释器锁 剥夺CPU权限的两种情况:…
目录 05 网络并发 05 网络并发…
####################总结######################## 管道:是进程间通信的第二种方式,但是不推荐使用,因为管道会导致数据不安全的情况出现 事件:当我运行主进程的时候 需要子执行某个进程后 需要的返回值时 可以使用 信号量:互斥锁同时只允许一个线程更改数据,而信号量Semaphore是同时允许一定数量的线程更改数据 . 内部维护了一个计数器,acquire-1,release+1,为0的时候,其他的进程都要在acquire之前等待 进程池:  进程的创建和销…