本文将参考TensorFlow中文社区官方文档使用mnist数据集训练一个多层卷积神经网络(LeNet5网络),并利用所训练的模型识别自己手写数字. 训练MNIST数据集,并保存训练模型 # Python3 # 使用LeNet5的七层卷积神经网络用于MNIST手写数字识别 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_s…
TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology database),简单机器视觉数据集,28X28像素手写数字,只有灰度值信息,空白部分为0,笔迹根据颜色深浅取[0, 1], 784维,丢弃二维空间信息,目标分0~9共10类.数据加载,data.read_data_sets, 55000个样本,测试集10000样本,验证集5000样本.样本标注信…
     关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.csdn.net/qq_37608890/article/details/79343860).        本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关概念 1.MNIST MNIST(Mixed…
最近一直在学习李宏毅老师的机器学习视频教程,学到和神经网络那一块知识的时候,我觉得单纯的学习理论知识过于枯燥,就想着自己动手实现一些简单的Demo,毕竟实践是检验真理的唯一标准!!!但是网上很多的与tensorflow或者神经网络相关的Demo教程都只是在验证官方程序的过程,而如何把这些程序变成自己可以真正利用的程序这一块的资料就比较少,就好比被“玩烂的"MNIST数据集(ML界的”hello world"),网上是有很多手写数字识别的教程,但那些利用的都是官方提供的数据集,这样就算验…
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ------------------------------------ 循环神经网络RNN 相关名词: - LSTM:长短期记忆 - 梯度消失/梯度离散 - 梯度爆炸 - 输入控制:控制是否把当前记忆加入主线网络 - 忘记控制:控制是否暂时忘记主线网络,先看当前分线 - 输出控制: 控制输出是否要考虑要素 - 数据有顺序的/序列化 - 前面的影响后面的 RNN L…
题目: 1)In the first step, apply the Convolution Neural Network method to perform the training on one single CPU and testing 2)In the second step, try the distributed training on at least two CPU/GPUs and evaluate the training time. 一.单机单卡实现mnist_CNN 1…
上代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #参数概要 def vari…
1. 经常使用类 class tf.contrib.rnn.BasicLSTMCell BasicLSTMCell 是最简单的一个LSTM类.没有实现clipping,projection layer.peep-hole等一些LSTM的高级变种,仅作为一个主要的basicline结构存在,假设要使用这些高级变种,需用class tf.contrib.rnn.LSTMCell这个类. 使用方式: lstm = rnn.BasicLSTMCell(lstm_size, forget_bias=1.0…
首先引入需要的包 %matplotlib inline import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt import sys import os path = os.path.abspath('..') if not path in sys.path: sys.path.append(path) 载入数据集,使数据中心化(减去平均值) from dataset.cl…
简述] 我们在学习编程语言时,往往第一个程序就是打印“Hello World”,那么对于人工智能学习系统平台来说,他的“Hello World”小程序就是MNIST手写数字训练了.MNIST是一个手写数字的数据集,官网是Yann LeCun's website.数据集总共包含了60000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test),每一个数字的大小为28*28像素.通过利用Tensorflow人工智能平台,我们可以学习到人工智能学习平台是如何通过数据…