import numpy as np from keras.models import Model from keras.models import load_model from keras.layers import Input,LSTM,Dense batch_size = 64 # Batch size for training. epochs = 100 # Number of epochs to train for. latent_dim = 256 # Latent dimensi…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/242 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
今天我们来解析下Tensorflow的Seq2Seq的demo.继上篇博客的PTM模型之后,Tensorflow官方也开放了名为translate的demo,这个demo对比之前的PTM要大了很多(首先,空间上就会需要大约20个G,另外差点把我的硬盘给运行死),但是也实用了很多.模型采用了encoder-decoder的框架结果,佐以attention机制来实现论文中的英语法语翻译功能.同时,模型的基础却来自之前的PTM模型.下面,让我们来一起来了解一下这个神奇的系统吧! 论文介绍及基础描写:…
RNN 模型作为一个可以学习时间序列的模型被认为是深度学习中比较重要的一类模型.在Tensorflow的官方教程中,有两个与之相关的模型被实现出来.第一个模型是围绕着Zaremba的论文Recurrent Neural Network Regularization,以Tensorflow框架为载体进行的实验再现工作.第二个模型则是较为实用的英语法语翻译器.在这篇博客里,我会主要针对第一个模型的代码进行解析.在之后的随笔里我会进而解析英语法语翻译器的机能. 论文以及Tensorflow官方教程介绍…
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutskever (Google)and so on 一.总览 DNNs在许多棘手的问题处理上取得了瞩目的成绩.文中提到用一个包含2层隐藏层神经网络给n个n位数字排序的问题.如果有好的学习策略,DNN能够在监督和反向传播算法下训练出很好的参数,解决许多计算上复杂的问题.通常,DNN解决的问题是,算法上容易的而计算上困难…
研究|对偶学习:一种新的机器学习范式  this blog copy from: http://www.msra.cn/zh-cn/news/blogs/2016/12/dual-learning-20161207.aspx 秦涛 作者简介 秦涛博士,现任微软亚洲研究院主管研究员.他和他的小组的研究领域是机器学习和人工智能,研究重点是深度学习和强化学习的算法设计.理论分析及在实际问题中的应用.他在国际顶级会议和期刊上发表学术论文80余篇,曾任SIGIR.ACML.AAMAS领域主席,担任多个国际…
http://3g.163.com/all/article/DM995J240511AQHO.html 选自the Gradient 作者:Sebastian Ruder 机器之心编译 计算机视觉领域常使用在 ImageNet 上预训练的模型,它们可以进一步用于目标检测.语义分割等不同的 CV 任务.而在自然语言处理领域中,我们通常只会使用预训练词嵌入向量编码词汇间的关系,因此也就没有一个能用于整体模型的预训练方法.Sebastian Ruder 表示语言模型有作为整体预训练模型的潜质,它能由浅…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld.技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. Encoder-Decoder(编码-解码)是深度学习中非常常见的一个模型框架,比如无监督算法的auto-encoding就是用编码-解码的结构设计并训练的:比如这两年比较热的image caption的应用,就是CNN-RNN的编码-解码框架:再比如神经网络机器翻译NMT模型,往往就是LSTM-LSTM的编码-解码框架.因此,准确的说…
前言 之前已经提到过好几次Attention的应用,但还未对Attention机制进行系统的介绍,之后的实践模型attention将会用到很多,因此这里对attention机制做一个总结. Seq2Seq 注意力机制(Attention Mechanism)首先是用于解决 Sequence to Sequence 问题提出的,因此我们了解下研究者是怎样设计出Attention机制的. Seq2Seq,即序列到序列,指的是用Encoder-Decoder框架来实现的端到端的模型,最初用来实现英语-…
本文参考文献: Gehring J, Auli M, Grangier D, et al. Convolutional Sequence to Sequence Learning[J]. arXiv preprint arXiv:1705.03122, 2017. 被引次数:13   Dauphin Y N, Fan A, Auli M, et al. Language modeling with gated convolutional networks[J]. arXiv preprint a…