首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
R语言中基于聚类的离群点挖掘
】的更多相关文章
R语言中基于聚类的离群点挖掘
思路:首先,通过K-means算法将数据点划分为成若K个簇:然后计算每一个数据对象到最近簇的中心距离,来与离群点设置的阈值进行比较,以此来判别该数据对象是否是离群点. 1.读取数据 data<- read.csv(read_file,header = T) 2.K-meas聚类 # 设置聚类数 center_num <- # 调用kmeans km <- kmeans(data,center_num) 3.计算各样本数据到最近中心的距离(nrow=189261是样本记录个数,根据实际情况…
R语言中的聚类的使用
这里的聚类主要用到K-Means和K-Medoide聚类.在进行聚类之前,为了避免不同参数之间量纲不同所造成的影响,先将数据进行(0-1)标准化 # 如参数weight data$weight <- (data$weight-min(data$weight))/(max(data$weight)-min(data$weight)) K-Means算法 1.读取数据 data <- read.csv("data/km/data.csv",header = T) 2.调用kme…
R语言中样本平衡的几种方法
R语言中样本平衡的几种方法 在对不平衡的分类数据集进行建模时,机器学习算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性.在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测.因此,机器学习算法常常被要求应用在平衡数据集上.不平衡分类是一种有监督学习,但它处理的对象中有一个类所占的比例远远大于其余类.比起多分类,这一问题在二分类中更为常见.不平衡一词指代数据中响应变量(被解释变量)的分布不均衡,如果一个数据集的响应变量在不同类上的分布差别较大我们…
R+openNLP︱openNLP的六大可实现功能及其在R语言中的应用
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- openNLP是NLP中比较好的开源工具,R语言中有openNLP packages,但是呢,貌似对中文的支持并不好,笔者试了试,发现结果并不如意.但是也算认识了一番,就来介绍一下. 一些内容转载于白宁超老师:OpenNLP:驾驭文本,分词那些事 ---------------------------------------- 一.openNL…
R语言学习笔记1——R语言中的基本对象
R语言,一种自由软件编程语言与操作环境,主要用于统计分析.绘图.数据挖掘.R本来是由来自新西兰奥克兰大学的Ross Ihaka和Robert Gentleman开发(也因此称为R),现在由“R开发核心团队”负责开发.R是基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行.R的语法是来自Scheme. R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux).…
R语言中的机器学习包
R语言中的机器学习包 Machine Learning & Statistical Learning (机器学习 & 统计学习) 网址:http://cran.r-project.org/web/views/MachineLearning.html维护人员:Torsten Hothorn 版本:2008-02-18 18:19:21 翻译:R-fox, 2008-03-18 机器学习是计算机科学和统计学的边缘交叉领域,R关于机器学习的包主要包括以下几个方面: 1)神经网络(N…
【机器学习与R语言】11- Kmeans聚类
目录 1.理解Kmeans聚类 1)基本概念 2)kmeans运作的基本原理 2.Kmeans聚类应用示例 1)收集数据 2)探索和准备数据 3)训练模型 4)评估性能 5)提高模型性能 1.理解Kmeans聚类 1)基本概念 聚类:无监督分类,对无标签案例进行分类. 半监督学习:从无标签的数据入手,是哦那个聚类来创建分类标签,然后用一个有监督的学习算法(如决策树)来寻找这些类中最重要的预测指标. kmeans聚类算法特点: kmeans算法涉及将n个案例中的每一个案例分配到指定k个类中的一个(…
机器学习:R语言中如何使用最小二乘法
详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同上一篇博客)(是不是很简单????) > x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y…
R语言中的横向数据合并merge及纵向数据合并rbind的使用
R语言中的横向数据合并merge及纵向数据合并rbind的使用 我们经常会遇到两个数据框拥有相同的时间或观测值,但这些列却不尽相同.处理的办法就是使用merge(x, y ,by.x = ,by.y = ,all = ) 函数. #合并ID<-c(1,2,3,4)name<-c("A","B","C","D")score<-c(60,70,80,90)student1<-data.frame(ID,na…
R语言中数据结构
R语言还是有点古老感觉,数据结构没有Python中那么好用.以下简单总结一下R语言中经常使用的几个数据结构. 向量: R中的向量能够理解为一维的数组,每一个元素的mode必须同样,能够用c(x:y)进行创建.如x <- c(1:9). 矩阵: R中的矩阵能够理解为二维数组,每个元素必需要有同样的mode,使用matrix进行创建.matrix的形式为: matrix(vector, nrow=number_of_rows, ncol=number_of_columns, byrow=logica…