import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import seaborn as sns %matplotlib inline np.random.seed(2) from sklearn.model_selection import train_test_split from sklearn.metrics import confus…
#We import libraries for linear algebra, graphs, and evaluation of results import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler from sklearn.metrics impo…
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np…
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import matplotlib.p…
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np…
# import pandas import pandas as pd # creating a DataFrame pd.DataFrame({'Yes': [50, 31], 'No': [101, 2]}) # another example of creating a dataframe pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland']}) pd.DataFram…
import pandas as pd # Data analysis import numpy as np #Data analysis import seaborn as sns # Data visualization import matplotlib.pyplot as plt # Data Visualization import matplotlib.gridspec as gridspec # subplots and grid from wordcloud import Wor…
import numpy as np import pandas as pd import os import matplotlib.pyplot as pl import seaborn as sns import warnings warnings.filterwarnings('ignore') data = pd.read_csv('F:\\kaggleDataSet\\MedicalCostPersonal\\insurance.csv') data.head() data.isnul…
df = pd.read_csv("F:\\kaggleDataSet\\chennai-water\\chennai_reservoir_levels.csv") df["Date"] = pd.to_datetime(df["Date"], format='%d-%m-%Y') df.head() import datetime def scatter_plot(cnt_srs, color): trace = go.Scatter( x=c…
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # plotly import chart_studio.plotly as py from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import plotly…
drop_list1 = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_wo…
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Any results you write to the current directory are saved as output. import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline…
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window10.0 实验内容和原理 (1)实验内容: 使用k近邻算法改进约会网站的配对效果.海伦使用约会网址寻找适合自己的约会对象,约会网站会推荐不同的人选.她将曾经交往过的的人总结为三种类型:不喜欢的人.魅力一般的人.极具魅力的人.尽管发现了这些规律,但依然无法将约会网站提供的人归入恰当的分类.使用KNN算…
from numpy import * def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0,32*i+j] = int(lineStr[j]) return returnVect def loadImages(dirName): from os i…
import os import numpy as np import pandas as pd from datetime import datetime import matplotlib import matplotlib.pyplot as plt import seaborn as sns sns.set_style('white') %matplotlib inline %load_ext autoreload %autoreload 2 def to_utms(ut): retur…
import pandas as pd pd.DataFrame({'Yes': [50, 21], 'No': [131, 2]}) pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland.']}) pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland.']},…
用 Python 进行数据分析处理,其中最炫酷的就属 Pa ndas 套件了 . 比如,如果我 们通过 Requests 及 Beautifulsoup 来抓取网页中的表格数据 , 需要进行较复 杂的搜寻才能抓取 , 但通过 Pandas 不但可以自动读取网页中的表格数据,还能对数 据进行修改.排序等处理,以及给制统计图表 . Pandas 主要的数据类型有两种: Series 是一维数据结构, 其用法与列表类 似: DataFrame 是 二维数据结 构, 表格 即为 DataFrame 的典…
分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先统计特征在数据集中取某个特定值 的次数,然后除以数据集的实例总数,就得到了特征取该值的概率. 首先从一个最简单的概率分类器开始,然后给 出一些假设来学习朴素贝叶斯分类器.我们称之为“朴素”,是因为整个形式化过程只做最原始.最简单的假设. 基于贝叶斯决策理论的分类方法 朴素贝叶斯是贝叶斯决策理论的一部…
我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可以完成很多分类任务,但是它最大的缺点就是无法给出数据的内 在含义,决策树的主要优势就在于数据形式非常容易理解. 决策树很多任务都 是为了数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列 规则,机器学习算法最终将使用这些机器从数据集中创造的规则.专家系统中经常使用决策树,…
Web 数据抓取技术具有非常巨大的应用需求及价值, 用 Python 在网页上收集数据,不仅抓取数据的操作简单, 而且其数据分析功能也十分强大. 通过 Python 的时lib 组件中的 urlparse 函数,可轻松解 析指定网址的内容,在接收返回的 ParseResult 对象后,即 可通过其属性取出网址中各项有用信息 . Python 还可进一步用 requests 函数抓取网页源代码, 再通过相关语句或正则表达式搜索得到指定的数据. 如果要抓取的数据比较复杂, Python 还可以通过功…
JSON (JavaScript Object Notation) 是一种轻量级的数据交换格式.它基于ECMAScript的一个子集. Python3 中可以使用 json 模块来对 JSON 数据进行编解码,它包含了两个函数: json.dumps(): 对数据进行编码. json.loads(): 对数据进行解码. 在json的编解码过程中,python 的原始类型与json类型会相互转换,具体的转化对照如下: Python 编码为 JSON 类型转换对应表: Python JSON dic…
什么是 XML? XML 指可扩展标记语言(eXtensible Markup Language),标准通用标记语言的子集,是一种用于标记电子文件使其具有结构性的标记语言. XML 被设计用来传输和存储数据. XML 是一套定义语义标记的规则,这些标记将文档分成许多部件并对这些部件加以标识. 它也是元标记语言,即定义了用于定义其他与特定领域有关的.语义的.结构化的标记语言的句法语言. Python 对 XML 的解析 常见的 XML 编程接口有 DOM 和 SAX,这两种接口处理 XML 文件的…
语法错误 Python 的语法错误或者称之为解析错,是初学者经常碰到的,如下实例 >>>while True print('Hello world') File "<stdin>", line 1, in ? while True print('Hello world') ^ SyntaxError: invalid syntax 这个例子中,函数 print() 被检查到有错误,是它前面缺少了一个冒号 : . 语法分析器指出了出错的一行,并且在最先找到的…
Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件.它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式. from pylab import * size = 128,16 dpi = 72.0 figsize= size[0]/float(dpi),size[1]/float(dpi) fig = figure(figsize=figsize, dpi=dpi) fig.patch.set_alpha(0) axes([0,0,1,1], frameon=Fal…
本博文使用的数据库是MySQL和MongoDB数据库.安装MySQL可以参照我的这篇博文:https://www.cnblogs.com/tszr/p/12112777.html 其中操作Mysql使用到的python模块是pymysql,下面是有关这个模块的使用说明: 创建一个数据库test create DATABASE taobao; 下面将要安装一个navicat for mysql这样的软件,下载链接:https://www.pcsoft.com.cn/soft/20832.html?…
用python爬取动态网页时,普通的requests,urllib2无法实现.例如有些网站点击下一页时,会加载新的内容,但是网页的URL却没有改变(没有传入页码相关的参数),requests.urllib2无法抓取这些动态加载的内容,此时就需要使用Selenium了. 使用Selenium需要选择一个调用的浏览器并下载好对应的驱动,我使用的是Chrome浏览器. 将下载好的chromedrive.exe文件复制到系统路径:E:\python\Scripts下,如果安装python的时候打path…
这篇博文主要是对我的这篇https://www.cnblogs.com/tszr/p/12198054.html爬虫效率的优化,目的是为了提高爬虫效率. 可以根据出发地同时调用多个CPU,每个CPU运行一个出发地的脚本,如果你的电脑有8个CPU,那么将会每次同时获取8个出发地的数据. 代码如下: import time import json import pymongo import requests import urllib.request #使用MongoDB创建数据库.表 client…
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data 1.在自己编译器运行的python环境的...\Python3\Lib\site-packages,该目录下有文件夹tensorflow, tensorflow_core, ensorflow_estimator 2.进入tensorflow_core\examples文件夹,如果文件夹下只有s…
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile import tensorflow.contrib.slim as slim # 加载通过TensorFlow-Slim定义好的inception_v3模型. import tensorflow.contrib.slim.python.slim.nets.incepti…
基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 = [] xcord1 = [] ycord1 = [] markers =[] colors =[] fr = open('F:\\machinelearninginaction\\Ch06\\testSet.txt')#this file was generated by 2normalGen.…