tex文档: \documentclass[a4paper, 12pt]{article} % Font size (can be 10pt, 11pt or 12pt) and paper size (remove a4paper for US letter paper) \usepackage{amsmath,amsfonts,bm} \usepackage{hyperref} \usepackage{amsthm,epigraph} \usepackage{amssymb} \usepac…
As noted,if $z=x+iy$,$x,y\in\mathbf{R}$,then $|z|=\sqrt{x^2+y^2}$ is equivalent to $|z|^2=z\overline{z}$.Use this to show that if also $w\in\mathbf{C}$,$$|zw|=|z|\cdot|w|.$$ Solve:  $|zw|^{2}=(zw)\cdot  (\overline{zw})=(zw)\cdot(\overline{z}\cdot\ove…
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following intial-value problems in $\bbR^2$: (1)$2u_y-u_x+xu=0$ with $u(x,0)=2xe^{x^2/2}$; (2)$u_y+(1+x^2)u_x-u=0$ with $u(x,0)=\arctan x$. Solution: (1)Since $(-1,…
A Basic Course in Partial Differential Equations, Qing Han, 2011 [下载说明:点击链接,等待5秒, 点击右上角的跳过广告后调至下载页面, 点击电信下载即可] http://adf.ly/dNpi7           http://adf.ly/dNplx 习题解答请见:http://bbs.sciencenet.cn/thread-1337491-1-1.html 或者在线观看: http://www.cnblogs.com/zh…
title: [线性代数]6-3:微分方程的应用(Applications to Differential Equations) categories: Mathematic Linear Algebra keywords: Eigenvalues Eigenvectors Differential Equations toc: true date: 2017-11-22 15:09:04 Abstract: 本文主要介绍线性代数在微分方程中的应用 Keywords: Eigenvalues,E…
NIPS2018最佳论文解读:Neural Ordinary Differential Equations 雷锋网2019-01-10 23:32     雷锋网 AI 科技评论按,不久前,NeurIPS 2018 在加拿大蒙特利尔召开,在这次著名会议上获得最佳论文奖之一的论文是<Neural Ordinary Differential Equations>,论文地址:https://arxiv.org/abs/1806.07366.Branislav Holländer 在 towards…
此文是对 [Introduction to Differential Equations,Michael E.Taylor] 第3页的一个注记.在该页中,作者给了微分方程$$\frac{dx}{dt}=x,x(0)=1.$$一个幂级数的解法.设$$x(t)=a_0t^0+a_1t^1+a_2t^2+a_3t^3+a_4t^4+\cdots$$注意,作者这样设之后,其实已经假定存在一个实解析函数满足该微分方程,剩下的就是解出该实解析函数.为此,作者进行逐项微分.$$x'(t)=a_1+2a_2t+…
(Newton 1671, “Problema II, Solutio particulare”). Solve the total differential equation $$3x^2-2ax+ay-3y^2y'+axy'=0.$$Solve:We have $$y'(3y^2-ax)=3x^2-2ax+ay.$$So$$dy(3y^2-ax)=(3x^2-2ax+ay)dx.$$So $$y^{3}-axy=x^3-ax^2+axy+C$$where $c$ is a constant.…
Solve equation $y'=1-3x+y+x^2+xy$ with another initial value $y(0)=1$. Solve: We solve this by using Newton's extraordinary method.We assume that the solution is analytic,which means it can be expanded in Taylor series.$y(0)=1$ means that $$ y'(0)=2…
Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. Before: a discrete sequence of hidden layers. After: the derivative of the hidden state. Traditional methods: resid…