How Many Partitions Does An RDD Have】的更多相关文章

From https://databricks.gitbooks.io/databricks-spark-knowledge-base/content/performance_optimization/how_many_partitions_does_an_rdd_have.html For tuning and troubleshooting, it's often necessary to know how many paritions an RDD represents. There ar…
RDD: Resilient Distributed Dataset RDD的特点: 1.A list of partitions       一系列的分片:比如说64M一片:类似于Hadoop中的split:   2.A function for computing each split     在每个分片上都有一个函数去迭代/执行/计算它   3.A list of dependencies on other RDDs     一系列的依赖:RDDa转换为RDDb,RDDb转换为RDDc,那…
RDD的依赖关系 Rdd之间的依赖关系通过rdd中的getDependencies来进行表示, 在提交job后,会通过在DAGShuduler.submitStage-->getMissingParentStages privatedefgetMissingParentStages(stage: Stage): List[Stage] = { valmissing =newHashSet[Stage] valvisited =newHashSet[RDD[_]] defvisit(rdd: RD…
---- map. --- flatMap.fliter.distinct.repartition.coalesce.sample.randomSplit.randomSampleWithRange.takeSample.union.++.sortBy.intersection map源码 /** * Return a new RDD by applying a function to all elements of this RDD. */def map[U: ClassTag](f: T =…
摘要:   RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集   RDD有两种操作算子:          Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住了数据集的逻辑操作          Ation(执行):触发Spark作业的运行,真正触发转换算子的计算   本系列主要讲解Spark中常用的函数操作:…
转载自:http://blog.csdn.net/liuwenbo0920/article/details/45243775 1. Spark中的基本概念 在Spark中,有下面的基本概念.Application:基于Spark的用户程序,包含了一个driver program和集群中多个executorDriver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver programExecutor:为某App…
一 简介 spark核心是RDD,官方文档地址:https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds官方描述如下:重点是可容错,可并行处理 Spark revolves around the concept of a resilient distributed dataset (RDD), which is a fault-tolerant colle…
在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对RDD的repartition.coalesce进行对比. RDD重新分区的手段与DataFrame类似,有repartition.coalesce两个方法 repartition def repartition(numPartitions: Int): JavaRDD[T] /** * Return…
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark-1.6 一.RDDRDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工…
map map(func) Return a new distributed dataset formed by passing each element of the source through a function func. 返回通过函数func传递源的每个元素形成的新的分布式数据集.通过函数得到一个新的分布式数据集. var rdd = session.sparkContext.parallelize(1 to 10) rdd.foreach(println) println("===…