样本示意,为kdd99数据源: 0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal. 0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1…
先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc')) df 是这样子滴 那么这三种选取数据的方式该怎么选择呢? 一.当每列已有column name时,用 df [ 'a' ] 就能选取出一整列数据.如果你知道column names 和index,且两者都很好输入,可以选择 .loc df.loc[0, '…
pandas.DataFrame.quantile 用于返回数据中的 处于1/5    1/2(中位数)等数据…
Python读写excel的工具库很多,比如最耳熟能详的xlrd.xlwt,xlutils,openpyxl等.其中xlrd和xlwt库通常配合使用,一个用于读,一个用于写excel.xlutils结合xlrd可以达到修改excel文件目的.openpyxl可以对excel文件同时进行读写操作. 而说到数据预处理,pandas就体现除了它的强大之处,并且它还支持可读写多种文档格式,其中就包括对excel的读写.本文重点就是介绍pandas对excel数据集的预处理. 机器学习常用的模型对数据输入…
首先,python 多线程不能充分利用多核CPU的计算资源(只能共用一个CPU),所以得用多进程.笔者从3.7亿数据的索引,取200多万的数据,从取数据到构造pandas dataframe总共大概用时14秒左右.每个分片用一个进程查询数据,最后拼接出完整的结果. 由于返回的json数据量较大,每次100多万到200多万,如何快速根据json构造pandas 的dataframe是个问题 — 笔者测试过read_json().json_normalize().DataFrame(eval(pan…
Pandas DataFrame数据的增.删.改.查 https://blog.csdn.net/zhangchuang601/article/details/79583551 #删除列 df_2 = df_1.drop(columns=['deptNo','routeNo']).copy() del df_2['trp_vehicleType'] #列名变更 df_3 = df_2.rename(columns={'dingdanNo':'订单号', 'createTime':'建单时间'})…
This would allow chaining operations like: pd.read_csv('imdb.txt') .sort(columns='year') .filter(lambda x: x['year']>1990) # <---this is missing in Pandas .to_csv('filtered.csv') For current alternatives see: http://stackoverflow.com/questions/11869…
接着前天的豆瓣书单信息爬取,这一篇文章看一下利用pandas完成对数据的存储. 回想一下我们当时在最后得到了六个列表:img_urls, titles, ratings, authors, details. 我们如何对这些数据进行存储:让每一本书的每一个元素可以一一对应起来,形成第一本书的书名.作者等等在一起,下一本书的书名.作者在一起. 这里我们接触一个新的数据存储形式:pandas库里的DataFrame. pandas.DataFrame() DataFrame是一个表格型的数据结构,它含…
在SQL语言中去重是一件相当简单的事情,面对一个表(也可以称之为DataFrame)我们对数据进行去重只需要GROUP BY 就好. select custId,applyNo from tmp.online_service_startloan group by custId,applyNo 1.DataFrame去重 但是对于pandas的DataFrame格式就比较麻烦,我看了其他博客优化了如下三种方案. 我们先引入数据集: import pandas as pd data=pd.read_…
import sys from qdarkstyle import load_stylesheet_pyqt5 from PyQt5.QtWidgets import QApplication, QTableView from PyQt5.QtCore import QAbstractTableModel, Qt class QtTable(QAbstractTableModel): def __init__(self, data): QAbstractTableModel.__init__(s…
今天是2017年12月30日,2017年的年尾,2018年马上就要到了,回顾2017过的确实很快,不知不觉就到年末了,再次开篇对2016.2017年的学习数据挖掘,机器学习方面的知识做一个总结,对自己所学的知识也做一个梳理,查漏补缺关于数据挖据.数据分析,可视化,ML,DL,NLP等. 作者:csj更新时间:2017.12.27 email:59888745@qq.com 说明:因内容较多,会不断更新 *学习总结: 2016.10 主要看的书 <Python3-廖雪峰>,<Python核…
示例: 有如下表需要进行行转列: 代码如下: # -*- coding:utf-8 -*- import pandas as pd import MySQLdb from warnings import filterwarnings # 由于create table if not exists总会抛出warning,因此使用filterwarnings消除 filterwarnings('ignore', category = MySQLdb.Warning) from sqlalchemy i…
在有监督(supervise)的机器学习中,数据集常被分成2~3个即: 训练集(train set) 验证集(validation set) 测试集(test set) 一般需要将样本分成独立的三部分训练集(train set),验证集(validation set)和测试集(test set).其中训练集用来估计模型,验证集用来确定网络结构或者控制模型复杂程度的参数,而测试集则检验最终选择最优的模型的性能如何.一个典型的划分是训练集占总样本的50%,而其它各占25%,三部分都是从样本中随机抽取…
说明 该文为笔者在微信公众号:吴恩达deeplearningai 所推送<机器学习训练秘籍>系列文章的学习笔记,公众号二维码如下,1到15课课程链接点这里 该系列文章主要是吴恩达先生在机器学习方面的经验分享和基础教程,每一章十分短小,旨在让我们能在碎片化的时间中一点点熟悉机器学习的相关知识. 想看该系列文章英文版最新章节的同学请点击这里进行邮件订阅 第1至15章 1.2.3.决策方案很重要 -方案示例: 1.获取更多的数据,即收集更多猫的图片 2.收集更加多样化的训练数据集,比如处于不常见位置…
最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stackoverflow.com/questions/tagged/pandas?sort=votes&pageSize=15 add one row in a pandas.DataFrame -DataFrame添加行 https://stackoverflow.com/questions/107159…
Xgboost调参: https://wuhuhu800.github.io/2018/02/28/XGboost_param_share/ https://blog.csdn.net/hx2017/article/details/78064362 pandas DataFrame中的空值处理: https://blog.csdn.net/yuanxiang01/article/details/78738812 pandas的DataFrame.Series删除列: https://blog.c…
1. 从字典创建Dataframe >>> import pandas as pd >>> dict1 = {'col1':[1,2,5,7],'col2':['a','b','c','d']} >>> df = pd.DataFrame(dict1) >>> df col1 col2 0 1 a 1 2 b 2 5 c 3 7 d 2. 从列表创建Dataframe (先把列表转化为字典,再把字典转化为DataFrame) >…
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pandas DataFrame的修改方法 此文我们继续围绕DataFrame介绍相关操作. 平时在用DataFrame时候,删除操作用的不太多,基本是从源DataFrame中筛选数据,组成一个新的DataFrame再继续操作. 1. 删除DataFrame某一列 这里我们继续用上一节产生的DataFram…
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pandas DataFrame的修改方法 在pandas里,DataFrame是最经常用的数据结构,这里总结生成和添加数据的方法: ①.把其他格式的数据整理到DataFrame中: ②在已有的DataFrame中插入N列或者N行. 1. 字典类型读取到DataFrame(dict to DataFrame…
欢迎加入python学习交流群 667279387 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据的归一化 pandas学习(五)–pandas学习视频 归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式.主要是为了数据处理方便提出来的,把数据映射到0-1范围之内处理. 常见归一化算法 1.min-max标准化(Min-Max Normalizatio…
TensorFlow的Javascript版 TensorFlow一直努力扩展自己的基础平台环境,除了熟悉的Python,当前的TensorFlow还实现了支持Javascript/C++/Java/Go/Swift(预发布版)共6种语言. 越来越多的普通程序员,可以容易的在自己工作的环境加入机器学习特征,让产品更智能. 在Javascript语言方面,TensorFlow又分为两个版本.一个是使用node.js支持,用于服务器端开发的@tensorflow/tfjs-node.安装方法: np…
Alink漫谈(七) : 如何划分训练数据集和测试数据集 目录 Alink漫谈(七) : 如何划分训练数据集和测试数据集 0x00 摘要 0x01 训练数据集和测试数据集 0x02 Alink示例代码 0x03 批处理 3.1 得到记录数 3.2 随机选取记录 3.2.1 得到总记录数 3.2.2 决定每个task选择记录数 3.2.3 每个task选择记录 3.3 设置训练数据集和测试数据集 0x04 流处理 0x05 参考 0x00 摘要 Alink 是阿里巴巴基于实时计算引擎 Flink…
pandas目录 思维导图 1 简介 DataFrame 是 Pandas 的重要数据结构之一,也是在使用 Pandas 进行数据分析过程中最常用的结构之一. 2 认识DataFrame结构 DataFrame 一个表格型的数据结构,既有行标签(index),又有列标签(columns),它也被称异构数据表,所谓异构,指的是表格中每列的数据类型可以不同,比如可以是字符串.整型或者浮点型等.其结构图示意图,如下所示: 表格中展示了某个销售团队个人信息和绩效评级(rating)的相关数据.数据以行和…
定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是pandas中主要的数据结构. 形式: class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) 参数含义: data : numpy ndarray(多维数组)(结构化或同质化的), dict(字典…
之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 applymap() 函数和pandas Series 的 apply() 方法,都是对整个对象上个各个值进行单独处理,返回一个新的对象. 而pandas DataFrame 的  apply() 函数,虽然也是作用于DataFrame的每个值,但是接受的参数不是各个值本身,而是DataFrame里各行(…
pandas DataFrame.shift()函数可以把数据移动指定的位数 period参数指定移动的步幅,可以为正为负.axis指定移动的轴,1为行,0为列. eg: 有这样一个DataFrame数据: import pandas as pd data1 = pd.DataFrame({ 'a': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] }) print data1 a b 0 0 9 1 1 8…
pandas DataFrame的 applymap() 函数可以对DataFrame里的每个值进行处理,然后返回一个新的DataFrame: import pandas as pd df = pd.DataFrame({ 'a': [1, 2, 3], 'b': [10, 20, 30], 'c': [5, 10, 15] }) def add_one(x): return x + 1 print df.applymap(add_one) a b c 0 2 11 6 1 3 21 11 2…
和numpy数组(5)-二维数组的轴一样,pandas DataFrame也有轴的概念,决定了方法是对行应用还是对列应用: 以下面这个数据为例说明: 这个数据是5个车站10天内的客流数据: ridership_df = pd.DataFrame( data=[[ 0, 0, 2, 5, 0], [1478, 3877, 3674, 2328, 2539], [1613, 4088, 3991, 6461, 2691], [1560, 3392, 3826, 4787, 2613], [1608,…
pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: import pandas as pd df = pd.DataFrame({'A': [0, 1, 2], 'B': [3, 4, 5]}) print df # 结果: A B 0 0 3 1 1 4 2 2 5 行索引自动生成了 0,1,2 如果要自己指定行索引和列索引,可以使用 index 和 column 参数: 这个数据是5个车站10天内的客流数据: ridership_df = pd…
之前介绍了numpy的二维数组,但是numpy二维数组有一些局限性,比如,它数组里所有的值的类型必须相同,不能某一列是数值型,某一列是字符串型,这样会导致无法使用 mean() , std() 等方法去计算某一行或某一列. 但是,使用pandas DataFrame可以解决这一问题. pandas DataFrame也是二维数据,和pandas Series一样, pandas DataFrame也有'索引'这个概念,它每一列都有一个索引值: import pandas as pd df = p…