UVa - 11283 - PLAYING BOGGLE】的更多相关文章

先上题目 Problem F PLAYING BOGGLE Boggle® is a classic word game played on a 4 by 4 grid of letters. The letter grid is randomly generated by shaking 16 cubes labeled with a distribution of letters similar to that found in English words. Players try to f…
UVA 1482 - Playing With Stones 题目链接 题意:给定n堆石头,每次选一堆取至少一个.不超过一半的石子,最后不能取的输,问是否先手必胜 思路:数值非常大.无法直接递推sg函数.打出前30项的sg函数找规律 代码: #include <stdio.h> #include <string.h> int t, n; long long num; long long SG(long long x) { return x % 2 == 0 ? x : SG(x /…
10067 - Playing with Wheels 题目页:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1008 从一开始思路就不对,之后才焕然大悟……每次都是这样. 还有,感觉搜索和图遍历有点分不清呢. 在第63行加入 if (u == target) return; 可以提速很多,可以从300ms左右降低到100ms以内. ?…
对于组合游戏的题: 首先把问题建模成NIM等经典的组合游戏模型: 然后打表找出,或者推出SG函数值: 最后再利用SG定理判断是否必胜必败状态: #include<cstdio> #define ll long long using namespace std; ll sg(ll x) { == ? x/ : sg(x/); } int main() { int t; scanf("%d",&t); while(t--) { int n; ll a,ans=; sca…
uva 6757 Cup of CowardsCup of Cowards (CoC) is a role playing game that has 5 different characters (Mage, Tank, Fighter,Assassin and Marksman). A team consists of 5 players (one from each kind) and the goal is to kill amonster with L life points. The…
问题来源:刘汝佳<算法竞赛入门经典--训练指南> P67 例题28: 问题描述:有一个长度为n的整数序列,两个游戏者A和B轮流取数,A先取,每次可以从左端或者右端取一个或多个数,但不能两端都取,所有数都被取完时游戏结束,然后统计每个人取走的所有数字之和作为得分,两人的策略都是使自己的得分尽可能高,并且都足够聪明,求A的得分减去B的得分的结果. 问题分析:1.设dp[i][j]表示从第i到第j的数的序列中,双方都采取最优策略的前提下,先手得分的最大值 2.若求dp[i][j],我们可以枚举从左边…
Strategic game Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Status Practice UVA 1292 Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is…
Piotr's Ants Porsition:Uva 10881 白书P9 中文改编题:[T^T][FJUT]第二届新生赛真S题地震了 "One thing is for certain: there is no stopping them;the ants will soon be here. And I, for one, welcome our new insect overlords."Kent Brockman Piotr likes playing with ants. H…
错排问题是一种特殊的排列问题. 模型:把n个元素依次标上1,2,3.......n,求每一个元素都不在自己位置的排列数. 运用容斥原理,我们有两种解决方法: 1. 总的排列方法有A(n,n),即n!,设Ai 表示数i在第i个位置的全体排列,显然有Ai =(n-1)!. 同理可得Ai∩Aj=(n-2)!,那么每一个元素都不在原来位置的排列就有n!-C(n,1)*(n-1)!+C(n,2)*(n-2)!-.....+(-1)^n *C(n,n)*1!. 也就是n!*(a-1/1!+1/2!-1/3!…
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5…