Numpy的简单操作 import numpy #导入numpy包 file = numpy.genfromtxt("文件路径",delimiter=" ",dtype=str) # 从文件中读取数据 print(type(file)) #打印数据类型,你会发现是numpy.ndarray类型(这个也是numpy中最重要的数据类型) print(file) #当你遇见不会的东西时 #可以使用帮助文档 print(help(file))…
通常对数据的矩阵进行操作,就用numpy操作,打开txt文件 使用help()去查询文档,可以看到官方的注释 import numpy path = r'F:\数据分析专用\数据分析与机器学习\world_alcohol.txt' world_alchol = numpy.genfromtxt(path, delimiter=",", dtype=str) print(type(world_alchol)) print(world_alchol) print(help(numpy.ge…
python数据分析学习目录 Anaconda的安装和更新 矩阵NumPy pandas数据表 matplotlib-2D绘图库学习目录                      …
在数据处理过程中,大量的非预期格式结构需要作转换,有大家熟知的多维转一维(准确来说应该是交叉表结构的数据转二维表标准数据表结构),也同样有一些需要透视操作的数据源,此篇同样提供更便捷的方法实现此类数据的转换. 功能起源场景 在Excel催化剂的持续性功能和文章输出的过程中,相信不少读者会觉得功能又多又杂,没有很好的系统性. 这个现状的确是存在,Excel催化剂的系统功能,并且凭空产生,而是大量地在实际的工作过程中所带出来的需求(开始开发插件后只能在开发过程中,在一些功能开发好之后,也带出了其他的…
1.1数组对象基础 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .tab…
import sys from datetime import datetime import numpy as np def numpysum(n): a = np.arange(n) ** 2 b = np.arange(n) ** 3 c = a + b return c def pythonsum(n): a = list(range(n)) b = list(range(n)) c = [] for i in range(len(a)): a[i] = i ** 2 b[i] = i…
目录 二:pandas数据结构介绍   下面继续讲解pandas的第二个工具DataFrame. 二:pandas数据结构介绍 2.DataFarme   DataFarme表示的是矩阵的数据表,包含已排序的列集合,是一个二维数据工具.每一列可以是不同的数据类型值.它既有行索引又有列索引,可以看作是一组共享相同索引的Series对象.DataFarme的数组方法有很多,比如用index.name获取某列的值,用values获取行的值.这里先介绍一些常用的知识.   (1)构建DataFrame…
目录 一:pandas数据结构介绍   python是数据分析的主要工具,它包含的数据结构和数据处理工具的设计让python在数据分析领域变得十分快捷.它以NumPy为基础,并对于需要类似 for循环 的大量数据处理的问题有非常快捷的数组处理函数.   但是pandas最擅长的领域还是在处理表格型二维以上不同数据类型数据.   基本导入语法: import pandas as pd    pandas标记缺失值或NA值为NaN.   有关python语法,数据分析简介,ipython,jupyt…
http://www.zhihu.com/question/22119753 http://www.zhihu.com/question/20757000 ****************************************** http://www.zhihu.com/question/29265587/answer/123961440 https://zhuanlan.zhihu.com/p/22842649 https://zhuanlan.zhihu.com/p/224196…
一.Numpy简介: Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象.对于数值运算来说这种结构显然比较浪费内存和CPU计算时间.此外Python还提供了一个array模块,array对象和列表不同,它直接保存数值,和C语言的一维数组比较类似.但是由于它不支持多维,也没有各种运算函数,因此也不适合做数值运算. NumPy提供了两种基本的对象:nda…