spark action之countbykey】的更多相关文章

java public class CountByKeyDemo { private static SparkConf conf = new SparkConf().setMaster("local").setAppName("countbykeydemo"); private static JavaSparkContext jsc = new JavaSparkContext(conf); public static void main(String[] args…
java /** *saveastextfile 把rdd中的数据保存到文件中,只能指定文件夹 *@author Tele * */ public class SaveasTextFileDemo1 { private static SparkConf conf = new SparkConf().setMaster("local").setAppName("saveastextfiledemo1"); private static JavaSparkContext…
一. 运维 1. Master挂掉,standby重启也失效 Master默认使用512M内存,当集群中运行的任务特别多时,就会挂掉,原因是master会读取每个task的event log日志去生成spark ui,内存不足自然会OOM,可以在master的运行日志中看到,通过HA启动的master自然也会因为这个原因失败. 解决 增加Master的内存占用,在Master节点spark-env.sh 中设置: export SPARK_DAEMON_MEMORY 10g # 根据你的实际情况…
1. Spark中的基本概念 Application:基于Spark的用户程序,包含了一个driver program和集群中多个executor. Driver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver program. Executor:为某Application运行在worker node上的一个进程.该进程负责运行Task,并负责将数据存在内存或者磁盘 上.每个Application都有自己独…
转载自:http://blog.csdn.net/liuwenbo0920/article/details/45243775 1. Spark中的基本概念 在Spark中,有下面的基本概念.Application:基于Spark的用户程序,包含了一个driver program和集群中多个executorDriver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver programExecutor:为某App…
主要参考: Spark官方文档:http://spark.apache.org/docs/latest/programming-guide.html 炼数成金PPT:02Spark编程模型和解析 本文基本按照Spark官方文档顺序,结合PPT中的详细描述,以及个人理解组成,并且本文基于Java语言接口进行分析.如有错误之处,恳请大家指出.本人也是Spark新手上路,理解可能有偏差,望广大同仁理解. Spark应用程序基本概念 基本元素 解释 Application 基于Spark的用户程序,包含…
cache和persist 将RDD数据进行存储,persist(newLevel: StorageLevel)设置了存储级别,cache()和persist()是相同的,存储级别为MEMORY_ONLY.因为RDD的transformation是lazy的,只有action算子才会触发transformain真正的执行,如果一个rdd需要进行多次的action算子操作,最好能够使用cache或persist将rdd缓存至内存中,这样除第一次action会触发transformation操作,后…
Spark排错与优化 http://blog.csdn.net/lsshlsw/article/details/49155087 一. 运维 1. Master挂掉,standby重启也失效 Master默认使用512M内存,当集群中运行的任务特别多时,就会挂掉,原因是master会读取每个task的event log日志去生成Sparkui,内存不足自然会OOM,可以在master的运行日志中看到,通过HA启动的master自然也会因为这个原因失败. 解决 增加Master的内存占用,在Mas…
RDD(弹性分布式数据集,里面并不存储真正要计算的数据,你对RDD的操作,他会在Driver端转换成Task,下发到Executor计算分散在多台集群上的数据) RDD是一个代理,你对代理进行操作,他会生成Task,帮你计算你操作这个代理,就像操作本地集合一样,不用关心任务调度,容错等 val r1 = sc.textFile("hdfs://hdp-02:9000/wc") r1.count //这样就统计出有多少行 创建RDD的方式生成一个RDD sc.textFile("…
导入 从一个Job运行过程中来看DAGScheduler是运行在Driver端的,其工作流程如下图: 图中涉及到的词汇概念: 1. RDD——Resillient Distributed Dataset 弹性分布式数据集. 2. Operation——作用于RDD的各种操作分为transformation和action. 3. Job——作业,一个JOB包含多个RDD及作用于相应RDD上的各种operation. 4. Stage——一个作业分为多个阶段. 5. Partition——数据分区,…
摘要:Apache Spark的出现让普通人也具备了大数据及实时数据分析能力.鉴于此,本文通过动手实战操作演示带领大家快速地入门学习Spark.本文是Apache Spark入门系列教程(共四部分)的第一部分. Apache Spark的出现让普通人也具备了大数据及实时数据分析能力.鉴于此,本文通过动手实战操作演示带领大家快速地入门学习Spark.本文是Apache Spark入门系列教程(共四部分)的第一部分. 全文共包括四个部分: 第一部分:Spark入门,介绍如何使用Shell及RDDs…
Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark Streaming.MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台. Spark使用Scala语言实现,…
Spark是现在应用最广泛的分布式计算框架,oozie支持在它的调度中执行spark.在我的日常工作中,一部分工作就是基于oozie维护好每天的spark离线任务,合理的设计工作流并分配适合的参数对于spark的稳定运行十分重要. Spark Action 这个Action允许执行spark任务,需要用户指定job-tracker以及name-node.先看看语法规则: 语法规则 <workflow-app name="[WF-DEF-NAME]" xmlns="uri…
摘要: 1.基本术语 2.运行架构 2.1基本架构 2.2运行流程  2.3相关的UML类图  2.4调度模块: 2.4.1作业调度简介 2.4.2任务调度简介 3.运行模式 3.1 standalone模式 4.RDD实战 总结: 基本术语: Application:在Spark 上建立的用户程序,一个程序由一个驱动程序(Driver Program)和集群中的执行进程(Executer)构成. Driver Program:运行应用程序(Application)的main函数和创建Spark…
RDD.Action触发SparkContext.run,这里举最简单的例子rdd.count() /** * Return the number of elements in the RDD. */ def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum Spark Action会触发SparkContext类的runJob,而runJob会继续调用DAGSchduler类的runJob DAGSchduler类的run…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建SparkContext…
前言: Spark Application的运行架构由两部分组成:driver program(SparkContext)和executor.Spark Application一般都是在集群中运行,比如Spark Standalone,YARN,mesos,这些集群给spark Application提供了计算资源和这些资源管理,这些资源既可以给executor运行,也可以给driver program运行.根据Spark Application的driver program是否在资源集群中运行…
随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐.用户行为分析等. Spark Streaming是建立在Spark上的实时计算框架,通过它提供的丰富的API.基于内存的高速执行引擎,用户可以结合流式.批处理和交互试查询应用.本文将详细介绍Spark Streaming实时计算框架的原理与特点.适用场景. Spark Streaming实时计算框架 Spark是一个类似于MapReduce的分布式计算框…
参考 http://www.cnblogs.com/shishanyuan/p/4721326.html 1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建SparkCon…
Apache Spark是一个围绕速度.易用性和复杂分析构建的大数据处理框架,最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一,与Hadoop和Storm等其他大数据和MapReduce技术相比,Spark有如下优势: Spark提供了一个全面.统一的框架用于管理各种有着不同性质(文本数据.图表数据等)的数据集和数据源(批量数据或实时的流数据)的大数据处理的需求 官方资料介绍Spark可以将Hadoop集群中的应用在内存中的运行速度提升100倍…
Application 指用户编写的Spark应用程序,其中包含了一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码. Driver Spark中的Driver即运行上述Application的main()函数并创建SparkContext.创建的目的是为了初始化Spark的运行环境.SparkContext负责与ClusterManager通信,进行资源的申请.任务的分配和监控等.当Executor部分运行完毕后,Driver同时负责将SparkContext关闭,通…
Spark目前被越来越多的企业使用,和Hadoop一样,Spark也是以作业的形式向集群提交任务,那么在内部实现Spark和Hadoop作业模型都一样吗?答案是不对的. 熟悉Hadoop的人应该都知道,用户先编写好一个程序,我们称为Mapreduce程序,一个Mapreduce程序就是一个Job,而一个Job里面可以有一个或多个Task,Task又可以区分为Map Task和Reduce Task,如下图所示: 而在Spark中,也有Job概念,但是这里的Job和Mapreduce中的Job不一…
Spark版本:1.1.1 本文系从官方文档翻译而来,转载请尊重译者的工作,注明以下链接: http://www.cnblogs.com/zhangningbo/p/4135905.html 目录 概述 不同应用程序间的资源调度 同一应用程序内的资源调度 Fair调度池 调度池的默认行为 调度池的属性配置 概述 Spark有几个功能用于在作业之间(译者注:作业包含两类:1)不同应用程序所执行的作业:2)同一应用程序内的不同作业所执行的作业.无论哪种作业,Spark都可以完成作业之间的资源调度.)…
Spark简介 Spark是基于内存计算的大数据分布式计算框架.Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性.       在Spark中,通过RDD(Resilient Distributed Dataset,弹性分布式数据集)来进行计算,这些分布式集合,并行的分布在整个集群中.RDDs是Spark分发数据和计算的基础抽象类. RDD属性: - A list of partitions - A function for computing eac…
作者:foreyou出处:http://www.foreyou.net/2015/06/22/spark-cluster-mode-overview/声明:本文采用以下协议进行授权: 署名-非商用|CC BY-NC 3.0 CN ,转载请注明作者及出处. 本篇文章作为理解Spark框架的入门文章,对<Spark Cluster Mode Overview>的翻译. 集群模式概述 为了便于理解Spark框架的组件,这篇文章对Spark是如何运行在集群上做了概述.如果想要知道如何提交应用程序给Sp…
#常用Transformation(即转换,延迟加载) #通过并行化scala集合创建RDD val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8)) #查看该rdd的分区数量 rdd1.partitions.length     val rdd1 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)) val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(_…
Client:客户端进程,负责提交作业到Master. Application:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: Cluster Manager:指的是在集群上获取资源的外部服务,目前有:Standalone:Spark原生的资源管理,由Master负责资源的分配:Hadoop Yarn:由YARN中的ResourceMan…
Spark工作机制 主要模块 调度与任务分配 I/O模块 通信控制模块 容错模块 Shuffle模块 调度层次 应用 作业 Stage Task 调度算法 FIFO FAIR(公平调度) Spark应用执行机制 总览 Spark应用提交后经历了一系列的转换,最后成为Task在每个节点上执行. RDD的Action算子触发Job的提交,提交到Spark中的Job生成RDD DAG 由DAGScheduler转化为Stage Dage 每个Stage中产生相应的Task集合 TaskSchedule…
集群模式概述 该文档给出了 Spark 如何在集群上运行.使之更容易来理解所涉及到的组件的简短概述.通过阅读 应用提交指南 来学习关于在集群上启动应用. 组件 Spark 应用在集群上作为独立的进程组来运行,在您的 main 程序中通过 SparkContext 来协调(称之为 driver 程序). 具体的说,为了运行在集群上,SparkContext 可以连接至几种类型的 Cluster Manager(既可以用 Spark 自己的 Standlone Cluster Manager,或者…
概述 在高层次上,每个Spark应用程序都由一个运行用户main方法的driver program组成,并在集群上执行各种 parallel operations.Spark提供的主要抽象是resilient distributed dataset (RDD),它是可以并行操作的群集节点之间分配的元素的集合.RDD是由Hadoop文件系统(或任何其他Hadoop支持的文件系统)中的文件或驱动程序中的现有Scala集合开始,并进行转换创建的.用户还可以要求Spark在内存中保留RDD,从而在并行操…