【hdu 2176】取(m堆)石子游戏】的更多相关文章

取(m堆)石子游戏 题意: Problem Description m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,10先取者胜,先取者第1次取时可以从有8个的那一堆取走7个剩下1个,也可以从有9个的中那一堆取走9个剩下0个,也可以从有10个的中那一堆取走7个剩下3个. Input 输入有多组.每组第1行是m,m<=200000. 后面m个非零正整数.m=0退出. Output 先取者负输出No.先取者胜输出Yes…
取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 4610 Accepted Submission(s): 2775 Problem Description m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,10先取者胜,先取者第1次取时可以从有…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2176 m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,10先取者胜,先取者第1次取时可以从有8个的那一堆取走7个剩下1个,也可以从有9个的中那一堆取走9个剩下0个,也可以从有10个的中那一堆取走7个剩下3个. Input输入有多组.每组第1行是m,m<=200000. 后面m个非零正整数.m=0退出. Output先取…
HDU2176题意: m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子. 通过 SG定理 我们可以知道每一个数的SG值,等于这个数到达不了的前面数中的最小值.本题题意和尼姆博弈一样,即可以在一堆中任意个石子,所以也就是说每个数都可以到达前面经过的每一个数,所以每一个数的SG值就是它本身.又因为有好多堆石子,所以可以看作多个一堆石子的游戏,我们可以让n代表每一堆石子的数量,那么让所有堆的SG(n)相互异或得到的结果就是答案(这里只是用SG定义来…
题意: m堆石头,每堆石头个数:a[1]....a[m]. 每次只能在一堆里取,至少取一个. 最后没石子取者负. 先取者负输出NO,先取胜胜输出YES,然后输出先取者第1次取子的所有方法.如果从有a个石子的堆中取若干个后剩下b个后会胜就输出a b 思路: 裸的NIM. 单看一堆石子,没有石头sg[0]=0,一个石头sg[1]=1,....n个石头sg[n]=n. 故SG[a[1],a[2]...a[m]] = sg[a[1]]^...^sg[a[m]] = a[1]^...^a[m] SG=0…
如果yes的话要输出所有情况,一开始觉得挺难,想了一下也没什么. 每堆的个数^一下,答案不是0就是先取者必胜,那么对必胜态显然至少存在一种可能性使得当前局势变成必败的.只要任意选取一堆,把这堆的数目变成其他堆异或和即可,这样,它们异或一下就是0了(变成了必败态).所以说,在这题就是,对任意一堆,变化以后的数目如果不大于这堆原来的数目,就是可能的第一次取的情况.代码如下: #include <stdio.h> #include <algorithm> using namespace…
题目思路: 对于尼姆博弈我们知道:op=a[1]^a[2]--a[n],若op==0先手必败 一个简单的数学公式:若op=a^b 那么:op^b=a: 对于第i堆a[i],op^a[i]的值代表其余各个堆值的亦或值. 我们现在希望将a[i]改变成某个更小的值使得,op^a[i]=0,反过来a[i]=op^0,输出它就好了 #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h&…
nim基础博弈 #include<stdio.h> #include<iostream> #include<cstring> #include<queue> using namespace std; int main() { ]; while(~scanf("%d",&n) && n) { ; ;i < n;i++) { scanf("%d",&a[i]); ans ^= a[i]…
取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3145    Accepted Submission(s): 1951 Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相…
取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1741    Accepted Submission(s): 1014 Problem Description m堆石子,两人轮流取.仅仅能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出如何取子.比如5堆 5,7,8,9,10先取者胜,先取者第1…
题意:威佐夫博弈原型,除了输出先手能不能胜,还要输出先手的第一手选择. 思路:预处理出1000000以内的所有奇异局势.对于每个自然数,其必然是某一个奇异局势的a或者b.故对于一个非奇异局势,必定有一个且一个只取一堆石子的操作使得当前局势变成奇异局势. #include<stdio.h> #include<string.h> #include<math.h> #include<iostream> using namespace std; ],b[]; voi…
题目链接:hdu 2177 这题不是普通的 Nim 博弈,我想它应该是另一种博弈吧,于是便推 sg 函数打了个 20*20 的表来看,为了方便看一些,我用颜色作了标记,打表代码如下: #include<cstdio> #include<cstring> #include<string> #include<map> #include<algorithm> #include<windows.h> using namespace std;…
题目思路:威佐夫博弈: 当当前局面[a,b]为奇异局时直接输出0 否则: 1.若a==b,输出(0 0): 2.将a,b不停减一,看能否得到奇异局,若有则输出: 3.由于 ak=q*k(q为黄金分割数)具有单调性,不断改变k的值,看是否可以得到奇异局,若有则输出. 其他的话,要注意一些细节. #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h> #include<…
由于要输出方案,变得复杂了.数据不是很大,首先打表,所有whthoff 的奇异局势. 然后直接判断是否为必胜局面. 如果必胜,首先判断能否直接同时相减得到.这里不需要遍历或者二分查找.由于两者同时减去一个数,他们的差不变,而且ak=k*(sqrt(5)+1),bk=ak+k; 则可以通过二者的差直接定位,然后判断. 对于另外一种情况,其中一个减去某个数,得到奇异局势,则是分情况二分查找. 注意一些细节 代码如下: #include<stdio.h> #include<cmath>…
http://acm.hdu.edu.cn/showproblem.php?pid=2176 第三种博弈,但一定要注意优化时间 取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1273    Accepted Submission(s): 760 Problem Description m堆石子,两人轮流取.只能在1…
取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1486    Accepted Submission(s): 865 Problem Description m堆石子,两人轮流取.仅仅能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出如何取子.比如5堆 5,7,8,9,10先取者胜,先取者第1次…
http://acm.hdu.edu.cn/showproblem.php?pid=2177 取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2484    Accepted Submission(s): 1500 Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏…
取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1263    Accepted Submission(s): 754 Problem Description m 堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,10先取者胜,先取者第1次取…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2176 [算法] Nim博弈 当石子数异或和不为0时,先手必胜,否则先手必败 设石子异或和为S 如果S xor ai <= ai,那么,第一步就可以从第i堆石子中取走(S xor ai)个石子 [代码] #include<bits/stdc++.h> using namespace std; #define MAXM 200010 int i,m,k,sum; int a[MAXM]; i…
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3030 Accepted Submission(s): 1823 Problem Description m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,10先取者胜,先取者第1次取时可以从有8个的那一堆取走7个…
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2403 Accepted Submission(s): 1441 Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取…
BUPT2017 wintertraining(15) #5C hdu2177 题意 两个人轮流取石子,可以取一堆的任意非负整数个或两堆取相同个,先取完的输. 给定若干组数据:a,b表示两堆的石子数量,求先手输还是赢,赢还要求第一步之后的两堆石子数,如果有取相同的方案,先输出. 题解 威佐夫博弈问题. 必输的状态(奇异局势):(0,0),(1,2),(3,5),..(a_k,a_k+k)其中a_k是前面未出现过的最小的正整数. 有一些性质:每个正整数在必输状态中出现且仅出现一次. 于是可以计算并…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2176 题目: Problem Description m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,10先取者胜,先取者第1次取时可以从有8个的那一堆取走7个剩下1个,也可以从有9个的中那一堆取走9个剩下0个,也可以从有10个的中那一堆取走7个剩下3个.   Input 输入有多组.每组第1行是m,m<=200000…
Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者.如果你胜,你第1次怎样取子?     Input 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,…
Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者.如果你胜,你第1次怎样取子?   Input 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,00…
有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者.如果你胜,你第1次怎样取子? Input 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,且a<=b.a=b=0退出. O…
m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,10先取者胜,先取者第1次取时可以从有8个的那一堆取走7个剩下1个,也可以从有9个的中那一堆取走9个剩下0个,也可以从有10个的中那一堆取走7个剩下3个. Input 输入有多组.每组第1行是m,m<=200000. 后面m个非零正整数.m=0退出. Output 先取者负输出No.先取者胜输出Yes,然后输出先取者第1次取子的所有方法.如果从有a个石子的堆中取若干个…
切切水题,放松心情:-D #include <cstdio> + ; int a[maxn]; int main() { //freopen("in.txt", "r", stdin); int m; && m) { ; ; i < m; i++) { scanf("%d", &a[i]); s ^= a[i]; } if(!s) { puts("No"); continue; } p…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2176 题意分析:给出M堆石子,两人交替取子,给出先手能否胜利. 不能输出No, 能则输出Yes并给出第一次取子的个数. 典型的Nim博弈,先判断T态,若是非T态再求第一次取子的个数 /*取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(…
取(m堆)石子游戏 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submission(s) : 2   Accepted Submission(s) : 2 Problem Description m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,10先取者胜,先取者第1次取时可以从有8个…