Spark MLlib回归算法LinearRegression】的更多相关文章

算法说明 线性回归是利用称为线性回归方程的函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析方法,只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归,在实际情况中大多数都是多元回归. 线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Learning).这类分析中训练数据集中给出的数据类型是确定的.机器学习的目标是,对于给定的一个训练数据集…
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好. 数学上,ElasticNet被定义为L1和L2正则化项的凸组合: 通过适当设置α,ElasticNet包含L1和L2正则化作为特殊情况.例如,如果用参数α设置为1来训练线性回归模型,则其等价于Lasso模型.另一方面,如果α被设置为0,则训练的模型简化为ridge回归模型.…
package iie.udps.example.spark.mllib; import java.util.regex.Pattern; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function;…
一.相关性分析 1.简介 计算两个系列数据之间的相关性是统计中的常见操作.在spark.ml中提供了很多算法用来计算两两的相关性.目前支持的相关性算法是Pearson和Spearman.Correlation使用指定的方法计算输入数据集的相关矩阵.输出是一个DataFrame,其中包含向量列的相关矩阵. 2.代码实现 package ml import org.apache.log4j.{Level, Logger} import org.apache.spark.ml.linalg.{Matr…
1.前言 上接 YFCC 100M数据集分析笔记 和 使用百度地图api可视化聚类结果, 在对 YFCC 100M 聚类出的景点信息的基础上,使用 Spark MLlib 提供的 ALS 算法构建推荐模型. 本节代码可见:https://github.com/libaoquan95/TRS/tree/master/Analyse/recommend 数据信息:https://github.com/libaoquan95/TRS/tree/master/Analyse/dataset 2.数据预处…
并行FP-Growth算法思路 上图的单线程形成的FP-Tree. 分布式算法事实上是对FP-Tree进行分割,分而治之 首先,假设我们只关心...|c这个conditional transaction,那么可以把每个transaction中的...|c保留,并发送到一个计算节点中,必然能在该计算节点构造出FG-Tree root | \ f:3 c:1 | c:3 进而得到频繁集(f,c)->3. 同样,如果把所有transaction中的...|b保留,并发送到一个计算节点中,必然能在该几点…
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基础:包括Spark的运行库.矩阵库和向量库: 算法库:包含广义线性模型.推荐系统.聚类.决策树和评估的算法: 实用程序:包括测试数据的生成.外部数据的读入等功能. MLlib的底层基础解析 底层基础部分主要包括向量接口和矩阵接口,这两种接口都会使用Scala语言基于Netlib和BLAS/LAPAC…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3816289.html 本文以spark 1.0.0版本MLlib算法为准进行分析 一.代码结构 逻辑回归代码主要包含三个部分 1.classfication:逻辑回归分类器 2.optimization:优化方法,包含了随机梯度.LBFGS两种算法 3.evaluation:算法效果评估计算…
保序回归即给定了一个无序的数字序列,通过修改其中元素的值,得到一个非递减的数字序列,要求是使得误差(预测值和实际值差的平方)最小.比如在动物身上实验某种药物,使用了不同的剂量,按理说剂量越大,有效的比例就应该越高,但是如果发现了剂量大反而有效率降低了,这个时候就只有把无序的两个元素合并了,重新计算有效率,直到计算出来的有效率不大于比下一个元素的有效率. MLlib使用的是PAVA(Pool Adjacent Violators Algorithm)算法,并且是分布式的PAVA算法.首先在每个分区…
梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details/53426350 梯度迭代树 算法简介: 梯度提升树是一种决策树的集成算法.它通过反复迭代训练决策树来最小化损失函数.决策树类似,梯度提升树具有可处理类别特征.易扩展到多分类问题.不需特征缩放等性质.Spark.ml通过使用现有decision tree工具来实现. 梯度提升树依次迭代训练一系列的…