基于RANSAC的点云面分割算法】的更多相关文章

该算法在RANSAC和空间检索树的基础上实现的. 算法思路: 1.点云抽希.法线估计 2.出局点索引存储声明 3.平面检测 for (size_t i = 0; i < cloudTemp->points.size(); i++) { 判断为出局点: if (检索一定量的临近点) { 判断搜索点集是否符合要求: 存储搜索的点集 : } RANSAC平面拟合(ransac计算平面模型参数): 判断平面拟合的正确性: /* * 利用拟合平面 计算点云到该面距离, 设置容差  判断点云是否在平面内…
0 引言 最近项目中用到了基于PCL开发的基于平面的点云和CAD模型的配准算法,点云平面提取采用的算法如下. 1 基于PCL的点云平面分割拟合算法 2 参数及其意义介绍 (1)点云下采样 1. 参数:leafsize 2. 意义:Voxel Grid的leafsize参数,物理意义是下采样网格的大小,直接影响处理后点云密集程度,并对后期各种算法的处理速度产生直接影响. 3. 值越大,点云密度越低,处理速度越快:值越小,点云密度越高,处理速度越慢.通常保持这个值,使得其他的与点数有关的参数可以比较…
首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则不能移动,那么如何求该点到达目的地N点的概率. 该问题可以描述为如下数学形式: P(0) = 0 P(N) = 1 P(x) = 1/2*P(x - 1) + 1/2*P(x + 1) for x = 1, 2, 3, … , N-1 如果用矩阵形式描述,即: 那么通过求解该线性方程组就可以得到各个…
VIPS:基于视觉的页面分割算法[微软下一代搜索引擎核心分页算法] - tingya的专栏 - 博客频道 - CSDN.NET VIPS:基于视觉的页面分割算法[微软下一代搜索引擎核心分页算法] 分类: 技术杂烩 2006-02-18 12:26 15873人阅读 评论(20) 收藏 举报 算法搜索引擎微软vbwebhtml 转载请注明来源: ,http://blog.csdn.net/tingya  谢谢合作 原文出处:http://www.ews.uiuc.edu/~dengcai2/tr-…
基于Matlab的标记分水岭分割算法 http://blog.sina.com.cn/s/blog_725866260100rz7x.html 1 综述 Separating touching objects in an image is one of the more difficult image processing operations. The watershed transform is often applied to this problem. The watershed tra…
转自:http://blog.sina.com.cn/lyqmath 1 综述 Separating touching objects in an image is one of the more difficult image processing operations. The watershed transform is often applied to this problem. The watershed transform finds "catchment basins"(…
Opencv分水岭算法——watershed自动图像分割用法 OpenCV距离变换distanceTransform应用 图像分割作为图像识别的基础,在图像处理中占有重要地位,通常需要在进行图像分割算法前找到轮廓或分割线,因此传统的分割算法主要集中在边缘检测.阈值处理等. 分水岭算法 分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特征.其他图像分…
网格分割算法是三维几何处理算法中的重要算法,具有许多实际应用.[Katz et al. 2003]提出了一种新型的层次化网格分割算法,该算法能够将几何模型沿着凹形区域分割成不同的几何部分,并且可以避免过度分割以及锯齿形分割边界.算法的核心思想是先利用模糊聚类的方法分割几何模型,并保留分割边界附近的模糊区域,然后利用最小割的方法在模糊区域里寻找准确的分割边界.算法主要包含以下4个步骤: 1. 计算网格中所有相邻面片之间的距离: 2. 计算每个面片属于不同分割区域的概率: 3. 迭代调整每个面片的概…
网格分割算法是三维几何处理算法中的重要算法,具有许多实际应用.[Katz et al. 2003]提出了一种新型的层次化网格分割算法,该算法能够将几何模型沿着凹形区域分割成不同的几何部分,并且可以避免过度分割以及锯齿形分割边界.算法的核心思想是先利用模糊聚类的方法分割几何模型,并保留分割边界附近的模糊区域,然后利用最小割的方法在模糊区域里寻找准确的分割边界.算法主要包含以下4个步骤: 1. 计算网格中所有相邻面片之间的距离: 2. 计算每个面片属于不同分割区域的概率: 3. 迭代调整每个面片的概…
深度学*点云语义分割:CVPR2019论文阅读 Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning 摘要 本文提出了一个新的超级学*框架,用于将三维点云过度分割为超点.本文将此问题转化为学*三维点的局部几何和辐射测量的深度嵌入,从而使物体边界呈现高对比度.嵌入计算使用轻量级神经网络在点的局部邻域上操作.最后,本文将点云过分集描述为一个与学*嵌入相关的图划分问题.这种新方法允许本文在密集的室内数据集(S3D…