3D聚类】的更多相关文章

1 3D聚类和普通的二维聚类实质一样,只不过维数太高了,用三维图来表示了. 下面将官网的改成只生成一个图了 #!/usr/bin/python # -*- coding:utf-8 -*- print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.py…
前言:这几天一直都在研究模糊聚类.感觉网上的文档都没有一个详细而具体的讲解,正好今天有时间,就来聊一聊模糊聚类. 一:模糊数学 我们大家都知道计算机其实只认识两个数字0,1.我们平时写程序其实也是这样if 1 then do.永远这种模式,在这种模式中,一个元素要么属于这个集合,要么不属于这个集合,但是对我们现在介绍的模糊集来说,某个元素可能部分属于这个集合,又可能部分属于另外的集合,显然,例如,一个男人(1表示),一个女人(0表示),但是随着科学技术的发展,出现了人妖这个生物(可能0.3属于男…
根据各行业特性,人们提出了多种聚类算法,简单分为:基于层次.划分.密度.图论.网格和模型的几大类. 其中,基于密度的聚类算法以DBSCAN最具有代表性.  场景 一 假设有如下图的一组数据, 生成数据的R代码如下 x1 <- seq(,pi,length.) y1 <- sin(x1) + ) x2 <- ,pi,length.) y2 <- cos(x2) + ) data <- data.frame(c(x1,x2),c(y1,y2)) names(data) <-…
使用k-means对3D网格模型进行分割 由于一些原因,最近在做网格分割的相关工作.网格分割的方法有很多,如Easy mesh cutting.K-means.谱分割.基于SDF的分割等.根据对分割要求的不同,选取合适的分割方法.本文中使用了较为简单的k-means对网格进行分割. K-means原理 K-means是一种简单的聚类方法,聚类属于无监督学习,聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集(x,y,z).聚类的目的是找到每个样本x潜在的类别y,…
谱聚类(Spectral Clustering)是一种广泛使用的数据聚类算法,[Liu et al. 2004]基于谱聚类算法首次提出了一种三维网格分割方法.该方法首先构建一个相似矩阵用于记录网格上相邻面片之间的差异性,然后计算相似矩阵的前k个特征向量,这些特征向量将网格面片映射到k维谱空间的单位球上,最后使用K-means方法对谱空间中的数据点进行聚类.具体算法过程如下: 一.相似矩阵 网格分割以面片为基本单元,为了能使算法沿着几何模型的凹形区域进行分割,网格相邻面片之间的距离采用[Katz…
1965年美国加州大学柏克莱分校的扎德教授第一次提出了'集合'的概念.经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面.为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析.用模糊数学的方法进行聚类分析,就是模糊聚类分析.FCM(Fuzzy C-Means)算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法.该聚类算法是传统硬聚类算法的一种改进. 算法流程: 标准化数据矩阵: 建立模糊相似矩阵,初始化隶属矩阵: 算法开始迭代,直到目标函数收敛到极小值: 根据迭代结果,…
在基于激光的自动驾驶或者移动机器人的应用中,在移动场景中提取单个对象的能力是十分重要的.因为这样的系统需要在动态的感知环境中感知到周围发生变化或者移动的对象,在感知系统中,将图像或者点云数据预处理成单个物体是进行进一步分析的第一个步骤. 在这篇文章中就提出了一种十分高效的分割方法.首先是将扫描到的点云移除平面处理,然后移除平面后一定范围内的点云数据分割成不同的对象.该论文的是集中解决了在很小的计算量的条件下,能够在大多数系统上做到高效的分割.避免了直接对3D点云的计算,并直接在2.5D 的深度图…
转自 [译]与TensorFlow的第一次接触(三)之聚类 2016.08.09 16:58* 字数 4316 阅读 7916评论 5喜欢 18 前一章节中介绍的线性回归是一种监督学习算法,我们使用数据与输出值(标签)来建立模型拟合它们.但是我们并不总是有已经打标签的数据,却仍然想去分析它们.这种情况下,我们可以使用无监督的算法如聚类.因为聚类算法是一种很好的方法来对数据进行初步分析,所以它被广泛使用. 本章中,会讲解K-means聚类算法.该算法广泛用来自动将数据分类到相关子集合中,每个子集合…
很久没有更新相关内容了,很多朋友过来私信我,但由于时间问题,不能一一为大家解答,本人也不是无所不知的大神,还请各位谅解. 本文主要总结PCL中3D特征点的相关内容,该部分内容在PCL库中都是已经集成的在pcl_feature模块中,该模块包含用于点云数据进行3D特征估计的数据结构以及原理机制,3D特征点是3D点的三维空间中的位置的表示,该点周围信息一般具有一定的几何性质. 举个例子:广泛使用的几何点特征的示例是下图的表面在查询点p处的估计曲率和法线.被认为是局部特征,因为它们使用由其k个最近点邻…
该论文的地址是:https://arxiv.org/pdf/1609.07720.pdf segmatch是一个提供车辆的回环检测的技术,使用提取和匹配分割的三维激光点云技术.分割的例子可以在下面的图片中看到. 该技术是基于在车辆附近提取片段(例如车辆.树木和建筑物的部分),并将这些片段与从目标地图中提取的片段相匹配.分段匹配可以直接转化为精确的定位信息,从而实现精确的三维地图构造和定位.在先前记录的部分(白色)和最近观察到的部分(彩色)之间,匹配的段的实例用绿色线显示在下面的图像中. 该方法依…