题目链接 http://poj.org/problem?id=1430 题解 qaq写了道水题-- 在模\(2\)意义下重写一下第二类Stirling数的递推式: \[S(n,m)=S(n-1,m-1)+(S(n-1,m)\ \text{and}\ m)\] 令\(S'(n,m)=S(n+m,m)\), 那么递推式变成了\(S'(n,m)=S'(n,m-1)+(S'(n-1,m)\ \text{and}\ m)\) 也就相当于从\((0,0)\)走到\((n,m)\)的NE Lattice Pa…
Binary Stirling Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1761   Accepted: 671 Description The Stirling number of the second kind S(n, m) stands for the number of ways to partition a set of n things into m nonempty subsets.…
Rank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 433    Accepted Submission(s): 207 Problem Description Recently in Teddy's hometown there is a competition named "Cow Year Blow Cow".N c…
http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1933 Accepted Submission(s): 711 Problem DescriptionA Baidu’s engineer needs to anal…
题目链接:http://acm.xju.edu.cn/JudgeOnline/problem.php?id=1006 第二类斯特林数: 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为  或者 . 第二类Stirling数的推导和第一类Stirling数类似,可以从定义出发考虑第n+1个元素的情况,假设要把n+1个元素分成m个集合则分析如下: (1)如果n个元素构成了m-1个集合,那么第n+1个元素单独构成一个集合.方案数 . (2)如果n个元素已…
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1}^i·i^k·2^{\frac{n(n-1)}{2}}\] 因为有\(n\)个点,所以还要乘以一个\(n\) 所以,我们真正要求的就是: \[\sum_{i=0}^{n-1}C_{n-1}^i·i^k\] 怎么做? 看到了\(i^k\)想到了第二类斯特林数 \[m^n=\sum_{i=0}^{m}…
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i=0}^n\sum_{j=0}^nS(i,j)·j!·2^j\] \[=\sum_{i=0}^n\sum_{j=0}^nj!·2^j(\frac{1}{j!}\sum_{k=0}^j(-1)^k·C_j^k·(j-k)^i)\] \[=\sum_{j=0}^n2^j\sum_{k=0}^j(-1)^k…
传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k\le 5000$. 很水的一道题. 根据第二类斯特林数的性质: $$n^k=\sum^k_{i=1}\begin{Bmatrix}k\\i\end{Bmatrix}i!\dbinom{n}{i}$$ 那么直接套进去: $$\sum\limits^n_{i=1}\dbinom{n}{i}\sum^k…
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是用第二类斯特林数转化一下,这样可以预处理第二类斯特林数,而sigma(C(dist(u,v),i))则利用C(n,x)=C(n-1,x)+C(n-1,x-1)来进行树DP转移得到. 设dp[u][k]=sigma(C(dist(u,v),k)),则dp[u][k]=dp[v][k]+dp[v][k-…
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权值为$V(R)=\sum\limits_{S\in R} W(S)$.求将n个物品划分成k个集合的所有方案的权值和. $n,k\le 2\cdot 10^5,w_i\le 10^9$ 题解:第二类斯特林数针是太好用辣! 显然每个物品都是独立的,所以我们只需要处理出每个物品被统计的次数即可,说白了就是…