https://blog.csdn.net/loveliuzz/article/details/73875904…
1 背景及理论基础 人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻的功能.从OpenCV2.4开始,加入了新的类FaceRecognizer,该类用于人脸识别,使用它可以方便地进行相关识别实验. 原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于或等于中心像素值,则该像素点的位置被标记为1,否则为0…
1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本集合的各个样本点到均值的距离之平均.以一个国家国民收入为例,均值反映了平均收入,而均方差/方差则反映了贫富差距,如果两个国家国民收入均值相等,则标准差越大说明国家的国民收入越不均衡,贫富差距较大.以上公式都是用来描述一维数据量的,把方差公式推广到二维,则可得到协方差公式: 协方差表明了两个随机变量之…
Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 1.4. 实现代码1 1.1. 原理,主要使用像素模糊后的差别会变小 通过计算横向前后俩点像素的差异..然后累加即可.. 1.2. 具体流程 图片灰度化,这样可以只保留hsv分量了...然后读取v分量,就是明亮度了.. Hs色相和饱和度全部去除了..   比较v分量的差异即可.. 1.3. 提升性…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with ALS-WR (三),这个写了三篇,基本都是写QR分解,然后矩阵进过处理得到U或者M的过程,但是还是没有讲出个所以然来.mahout官网上说其是根据这篇文献得来的Large-scale Parallel Collaborative Filtering for the Netflix Prize,本来我是想…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with ALS-WR这个算法中的那个QR分析,真心是太复杂了.以至于国庆后面三天基本都是在郁闷中过来的,想着自己的矩阵学的是有多差呀...后来算法验证弄懂之后才发觉,尼玛,java太坑爹了吧,矩阵求个逆,有那么复杂么!!! 下面来开始验证:首先应该获得了两个变量分别是Ai和Vi,如果这两个变量不知道是啥东西,可…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算法的并行主要就应该是ParallelALSFactorizationJob这里的并行了,下图是这个Job的大部分操作: 这里分析并行就是看每个job任务是否可以出现多个map或者reduce即可. (1)首先分析前面三个itemRatings,对应的输入是原始文件,如果原始文件很大的话,那么这个任务…
diff.js列表对比算法 源码分析 npm上的代码可以查看 (https://www.npmjs.com/package/list-diff2) 源码如下: /** * * @param {Array} oldList 原始列表 * @param {Array} newList 新列表 * @param {String} key 键名称 * @return {Object} {children: [], moves: [] } * children 是源列表 根据 新列表返回 移动的新数据,比…
原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论   自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形容建筑物用“米”,观测分子.原子等用“纳米”.更形象的例子比如Google地图,滑动鼠标轮可以改变观测地图的尺度,看到的地图绘制也不同:还有电影中的拉伸镜头等等…… 尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目标由近到远时目标在视网膜上的形成过程.尺度越大图像越模糊.   为什么要讨论…
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SIFT特征点赋了值,包含位置.尺度和方向的信息.接下来的步骤是关键点描述,即用用一组向量将这个关键点描述出来,这个描述子不但包括关键点,也包括关键点周围对其有贡献的像素点.用来作为目标匹配的依据(所以描述子应该有较高的独特性,以保证匹配率),也可使关键点具有更多的不变特性,如光照变化.3D视点变化等. SIFT…