BSGS算法(模板)】的更多相关文章

其实思维难度不是很大,但是各种处理很麻烦,公式推导到最后就是一个bsgs算法解方程 /* 要给M行N列的网格染色,其中有B个不用染色,其他每个格子涂一种颜色,同一列上下两个格子不能染相同的颜色 涂色方案%100000007的结果是R,现在给出R,N,K,请求出最小的M 对于第一行来说,每个位置有k种选择,那么填色方案数是k^n 对于第二行来说,每个位置有k-1中选择,那么填色方案数时(k-1)^n种 依次类推,如果i+1行的某个格子上面是白格,那么这个格子有k种填色方案 将M行分为两部分,第一部…
BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; struct node{ static const int mo=100007; int a[100010],v…
BSGS算法 我是看着\(ppl\)的博客学的,您可以先访问\(ppl\)的博客 Part1 BSGS算法 求解关于\(x\)的方程 \[y^x=z(mod\ p)\] 其中\((y,p)=1\) 做法并不难,我们把\(x\)写成一个\(am-b\)的形式 那么,原式变成了 \(y^{am}=zy^b(mod\ p)\) 我们求出所有\(b\)可能的取值(0~m-1),并且计算右边的值 同时用哈希或者\(map\)之类的东西存起来,方便查询 对于左边,我们可以枚举所有可能的\(a\),然后直接查…
bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以用\(bsgs\)在\(O(\sqrt n)\) 的复杂度内求出关于\(x\)的最小正整数解.(前提是\(p\)为质数) \(a^x\equiv b \mod p\) 我们可以知道如果我们的模数p是一个质数,我们将同余式的右边以逆元的形式乘到左边来,根据殴拉定理(因为p是质数,所以a,p互质)则我们…
<题目链接> 题目大意: P是素数,然后分别给你P,B,N三个数,然你求出满足这个式子的L的最小值 : BL== N (mod P). 解题分析: 这题是bsgs算法的模板题. #include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <string> #include <math.h> #include…
题目: 给出A,B,C 求最小的x使得Ax=B  (mod C) 题解: bsgs算法的模板题 bsgs 全称:Baby-step giant-step 把这种问题的规模降低到了sqrt(n)级别 首先B的种类数不超过C种,结合鸽巢原理,所以Ax具有的周期性显然不超过C 所以一般的枚举算法可以O(C)解决这个问题 但是可以考虑把长度为C的区间分为k块,每块长度为b 显然x满足x=bi-p的形式(1<=i<=k,0<=p<b),所以Ax=B  (mod C)移项之后得到Abi=Ap*…
https://www.zybuluo.com/ysner/note/1299836 定义 一种用来求解高次同余方程的算法. 一般问题形式:求使得\(y^x\equiv z(mod\ p)\)的最小非负\(x\). \(BSGS\)算法 要求\(p\)是质数. 由费马小定理可知,\(y^{p-1}\equiv1(mod\ p)\),所以暴力枚举只要枚举到\(p−1\)即可. 但是由于\(p\)一般都很大,所以一般都跑不动... 优化算法\(ing...\) 现在令\(x=mi−j\)(其中\(m…
前置芝士: 1.快速幂(用于求一个数的幂次方) 2.STL里的map(快速查找) 详解 BSGS 算法适用于解决高次同余方程 \(a^x\equiv b (mod p)\) 由费马小定理可得 x <= p-1 我们设 \(m = sqrt(p)\) 至于为什么写,下文会讲到. 那么\(x\)就可以用 \(m\) 表示出来. 即 x = \(k \times m - j\) 移项可得 \(a^t \equiv b\times a^j\) 其中 t = \(k \times m\) 这也就是我们为什…
匈牙利 算法 一. 算法简介 匈牙利算法是由匈牙利数学家Edmonds于1965年提出.该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法. 二分图的定义: 设G=(V,E)是一个无向图,顶点集V可分割为两个互不相交的子集V1,V2,那么称此图G为二分图. 例如,下图就是一个二分图: 二分图的匹配: 二分图中的子图中,每个节点只连一条边,则称该子图是二分图中的一个匹配. 极大匹配: 无法再向二分图中加入边,使得满足匹配条件. 最大匹配: 所有极大匹配中边数最多的一个匹配. 完…
Tarjan 算法 一.算法简介 Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度. 我们定义: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为强连通分量(strongly connected components). 例如:在上图中,{1 , 2 , 3 , 4 } , { 5 } ,  { 6 } 三个区域可以相…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 题意:有N个人跟N个房子,每个人跟房子都有一定的距离,现在要让这N个人全部回到N个房子里面去,要求所有人回去的距离最短. KM算法模板题~ #include "stdio.h" //hdu 2255 #include "string.h" #include "stdlib.h" #define N 305 #define INF 0x3ffff…
POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdio.h> #include <algorithm> #include <queue> #include <string.h> /* POJ 1273 dinic算法模板 边是有向的,而且存在重边,且这里重边不是取MAX,而是累加和 */ using namespace…
BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (mod p) 则 y^(j)≡z∗ine(y^(i*m)) (mod p)(逆元) 由费马小定理y^(p-1)≡1 (mod p) 得 ine(y^m) = y^(p-m-1)  ine(y^(i*m)≡ine(y^((i−1)m))∗y^(p-m-1) 1.首先枚举同余符号左面,用一个hash保存(…
The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20874   Accepted: 9421 Description Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering pr…
学弟在OJ上加了道"非水斐波那契数列",求斐波那契第n项对1,000,000,007取模的值,n<=10^15,随便水过后我决定加一道升级版,说是升级版,其实也没什么变化,只不过改成n<=10^30000000,并对给定p取模,0<p<2^31.一样很水嘛大家说对不对. 下面来简单介绍一下BSGS算法,BSGS(Baby steps and giant steps),又称包身工树大步小步法,听上去非常高端,其实就是一个暴力搜索.比如我们有一个方程,a^x≡b (…
dijkstra算法模板 http://acm.hdu.edu.cn/showproblem.php?pid=1874 #include<stdio.h> #include<string.h> #include<math.h> #include<iostream> #include<stdlib.h> #include<algorithm> #include<queue> #include<vector> #i…
BSGS算法 \(Baby Step Giant Step\)算法,即大步小步算法,缩写为\(BSGS\) 拔山盖世算法 它是用来解决这样一类问题 \(y^x = z (mod\ p)\),给定\(y,z,p>=1\)求解\(x\) 普通的\(BSGS\)只能用来解决\(gcd(y,p)=1\)的情况 设\(x=a*m+b, m=\lceil \sqrt p \rceil, a\in[0,m), b\in[0,m)\) 那么\(y^{a*m}=z*y^{-b} (mod\ p)\) 怎么求解,为…
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/7495310.html特别不喜欢那些随便转载别人的原创文章又不给出链接的所以不准偷偷复制博主的博客噢~~ 数据结构和算法模板系列之总览 很早前就打算将自己学过的数据结构和算法等知识和模板做个整理,但一直没有抽出时间来弄.现在打算抽空一点时间陆陆续续地将自己平时用的模板都贴上来,这里先做个综述. 主要针对那些想要准备机试.刷题或者刚刚接触ACM的初学者来说,对于A…
从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散对数,记为$x = ind_{a}b$. 假如给定$a, b, m$,考虑如何求$x$,或者输出无解,先考虑$(a, m) = 1$的情况. 定理1(欧拉定理) 若$(a, m) = 1$,则$a^{\varphi(m)}\equiv 1 \pmod{m}$. 证明这里就不给出,因为在百度上随便搜一…
例题  poj 2417bsgs  http://poj.org/problem?id=2417 这是一道bsgs题目,用bsgs算法,又称大小步(baby step giant step)算法,或者拔(b)山(s)盖(g)世(s)算法,或者北(b)上(s)广(g)深(s)算法... 题目大意就是 给定a,b,p,求最小的非负整数x,满足  ax ≡ b(mod p) 先令 x = i*m-j,其中 m=ceil(sqrt(p)),ceil是向上取整. 这样原式就变为     ai*m-j =…
妖怪题目,做到现在:2017/8/19 - 1:41…… 不过想想还是值得的,至少邻接矩阵型的Dinic算法模板get√ 题目链接:http://poj.org/problem?id=1815 Time Limit: 2000MS Memory Limit: 20000K Description In modern society, each person has his own friends. Since all the people are very busy, they communic…
BSGS算法总结 \(BSGS\)算法(Baby Step Giant Step),即大步小步算法,用于解决这样一个问题: 求\(y^x\equiv z\ (mod\ p)\)的最小正整数解. 前提条件是\((y,p)=1\). 我们选定一个大步长\(m=\sqrt p + 1\),设\(x=am+b\),那么显然有\(a,b\in[0,m)\).这样就有\(y^{am+b}\equiv z\ (mod\ p)\),就有\((y^m)^a=z*y^{-b}\ (mod\ p)\). 但是这个逆元…
Drainage Ditches Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 45 Accepted Submission(s): 38   Problem Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorit…
题目大意:给一张无向图,求出最小树形图. 题目分析:套朱-刘算法模板就行了... 代码如下: # include<iostream> # include<cstdio> # include<cstring> # include<algorithm> using namespace std; # define LL long long # define REP(i,s,n) for(int i=s;i<n;++i) # define CL(a,b) me…
POJ 2417 Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4860   Accepted: 2211 Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarith…
二分图:https://blog.csdn.net/c20180630/article/details/70175814 https://blog.csdn.net/flynn_curry/article/details/52966283 匈牙利算法模板:https://blog.csdn.net/sunny_hun/article/details/80627351 例题:hdu 1150 Machine Schedule 参考:https://www.cnblogs.com/qq-star/p…
题目链接 /* Name:hdu-3068-最长回文 Copyright: Author: Date: 2018/4/24 16:12:45 Description: manacher算法模板 */ #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <math.h> #include <algorithm> using…
 题目链接 /* Name:hdu-1102-Constructing Roads Copyright: Author: Date: 2018/4/18 9:35:08 Description: prime算法模板 */ #include <iostream> #include <cstdio> #include <cstring> #include <utility> #include <vector> using namespace std;…
前言 \(BSGS\)算法,全称\(Baby\ Step\ Giant\ Step\),即大小步算法.某些奆佬也称其为拔(Ba)山(Shan)盖(Gai)世(Shi)算法. 它的主要作用是求解形式如\(x^t\equiv y(mod\ MOD)\)的式子中\(t\)的值\((gcd(x,MOD)=1)\). 而且,它是一个简单易懂的算法(毕竟连我这样的数学渣渣都能理解). 一个简单的性质 首先,我们需要知道一个简单的性质. 由费马小定理可得,\(x^{MOD-1}\equiv1(mod\ MOD…
BSGS 算法,即 Baby Step,Giant Step 算法.拔山盖世算法. 计算 \(a^x \equiv b \pmod p\). \(p\)为质数时 特判掉 \(a,p\) 不互质的情况. 由于费马小定理 \(x^{p-1} \equiv 1 \pmod p\) 当 \(p\) 为质数,则要是暴力的话只需要枚举到 \(p-1\) 即可. 假设 \(x=it-j\),其中 \(t= \lceil \sqrt p \rceil,j \in [0,t]\),方程变为 \(a^{it-j}…