【loj3119】【CTS2019】随机立方体】的更多相关文章

传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text{或} c = z\}\) 发现恰好\(k\)个位置不大好算,考虑容斥计算强制\(k\)个位置是极大值的概率 对于极大值所在位置的数\(a_1,a_2,...,a_k\),假设\(a_1 > a_2 > ... > a_k\),那么我们还需要满足\(a_1 \geq a_1\)所在位置控制的…
problem \(\mathtt {loj-3119}\) 题意概要:一个 \(n\times m\times l\) 的立方体,立方体中每个格子上都有一个数,如果某个格子上的数比三维坐标中至少有一维相同的其他格子上的数都要大的话,我们就称它是极大的.将 \(n\times m\times l\) 的排列随机填入这些格子,求恰有 \(k\) 个极大的数的概率.\(T\) 组数据. \(T\le 10,\ 1\le n,m,l\le 5\times 10^6,\ 1\le k \le 100\)…
原题传送门 毒瘤计数题 我们设\(dp_i\)表示至少有\(i\)个极大数字的概率,\(ans_i\)表示恰好有\(i\)个极大数的概率,\(mi=Min(n,m,l)\) 易知: \[dp_i=\sum_{j=i}^{mi} ans_j \tbinom{j}{i}\] 由二项式反演得: \[ans_i=\sum_{j=i}^{mi} dp_j \tbinom{j}{i} (-1)^{j-i}\] 我就不在此证明(实际是我不会证明) 所以我们只需要快速求出dp数组,就珂以快速得到答案 我们需要利…
https://www.cnblogs.com/cjyyb/p/10900993.html #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=(l); i<=(r); i++) using namespace std; ,mod=; int n,m,l,d,V,M,k,T,ans,v[N],w[N],s[N],is[N],fac[N],inv[N]; : 1ll*fac[n]*inv[m]%m…
考虑容斥,计算至少有k个极大数的概率.不妨设这k个数对应的格子依次为(k,k,k)……(1,1,1).那么某一维坐标<=k的格子会对这些格子是否会成为极大数产生影响.先将这样的所有格子和一个数集对应起来,即将答案乘上一个组合数.然后需要考虑的就是这些格子有多少种合法排列顺序. 这个排列需要满足的是(i,i,i)之前不能出现某一维坐标为i的格子.可以看做是填完(i,i,i)后,所有三维坐标中最小值为i的格子就可以填了.这样的格子数量容易计算.于是考虑将格子依次塞进排列,显然第一位只能放(k,k,k…
这题七次方做法显然,但由于我太菜了,想了一会发现也就只会这么多,而且别的毫无头绪.发现直接做不行,那么,容斥! f[i]为至少i个极值的方案,然后这里需要一些辅助变量,a[i]表示选出i个三维坐标均不相同的i个极大值的方案数,g[i]表示i个极大的数任意一个至少有一维坐标相同的点的个数,h[i]表示g[i]的极值可以同时存在的方案数,那么有f[i]=C(nml,g[i])a[i]h[i](nml-g[i])!. a[i]很容易求得,就是(∏(n-j)(m-j)(l-j))/i!,其中j∈[0,i…
洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数,那么 \[ans=\dfrac{1}{(nml)!}\sum\limits_{i=k}^{\min(n,m,l)}f_i(-1)^{i-k}\dbinom{i}{k} \] 考虑怎么求 \(f_i\),首先我们肯定要选出 \(i\) 个极大的位置.我们假设 \(g_i\) 为选出 \(i\) 个极大的位置的…
[CTS2019]随机立方体(容斥) 题面 LOJ 洛谷 题解 做这道题目的时候不难想到容斥的方面. 那么我们考虑怎么计算至少有\(k\)个极大值的方案数. 我们首先可以把\(k\)个极大值的位置给确定出来,方案数是\(\displaystyle {n\choose k}{m\choose k}{l\choose k}(k!)^3\),乘上\(k!\)是为了确定之间的顺序关系,即我们先确定\(xyz\)三维,然后把这三维要一一对应到点才行.假设这个值是\(w[k]\). 剩下要填的是两个部分,一…
「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\(p\),那么我们需要把\(x=x_0\),\(y=y_0\)与\(z=z_0\)的三个平面的交中填上比\(p\)小的数字,这样,剩下的正方体就成了一个长宽高分别为\((n-1)(m-1)(l-1)\)的子问题了. 考虑到我们使用的是数字的相对大小关系,而不是数字的值,也就是说,任意的\(k\)个数字…
题目 ​ 一个 $ n m l $ 的立方体等概率填入 $ 1-nml $ ; ​ 定义一个位置是极大的当且仅当这个位置比三位坐标的至少一维与之相等的位置的值都大. ​ 询问极大值恰好有\(k\)个的概率 ​ $1 \le n,m,l \le 5000000  ,  1 \le k \le 100 , 1 \le T \le 10 $ 题解 由于平时不注意部分分所以CTS考得很难看,会改一改写博客的风格QAQ 二项式反演 \[ \begin{align} f_i = \sum_{j\le i}(…