Numpy | 09 高级索引】的更多相关文章

NumPy 比一般的 Python 序列提供更多的索引方式.除了之前看到的用整数和切片的索引外,数组可以由整数数组索引.布尔索引及花式索引. 整数数组索引 实例1:获取数组中(0,0),(1,1)和(2,0)位置处的元素 import numpy as np x = np.array([[1, 2], [3, 4], [5, 6]]) y = x[[0, 1, 2], [0, 1, 0]] print(y) 输出结果为: [1 4 5] 实例2:获取了 4x3 数组中的四个角的元素. 行索引是…
Numpy ndarray 高级索引 "bug" ? 话说一天,搞事情,代码如下 import numpy as np tmp = [1, 2, 3, 4] * 2 a, b = np.zeros((10, 10)), np.zeros((10, 10)) a[tmp[:-1], tmp[1:]] += 1 for i in range(len(tmp) - 1): b[tmp[i], tmp[i + 1]] += 1 print(a.sum() - b.sum()) 心理预期a 与…
NumPy 高级索引 NumPy 比一般的 Python 序列提供更多的索引方式.除了之前看到的用整数和切片的索引外,数组可以由整数数组索引.布尔索引及花式索引. 整数数组索引 以下实例获取数组中(0,0),(1,1)和(2,0)位置处的元素. 实例 import numpy as np x = np.array([[1, 2], [3, 4], [5, 6]]) y = x[[0,1,2], [0,1,0]] print (y) 输出结果为: [1 4 5] 以下实例获取了 4X3 数组中的四…
numpy广播机制,取特定行.特定列的元素 的高级索引取法 enter description here enter description here…
NumPy - 切片和索引 ndarray对象的内容可以通过索引或切片来访问和修改,就像 Python 的内置容器对象一样. 如前所述,ndarray对象中的元素遵循基于零的索引. 有三种可用的索引方法类型: 字段访问,基本切片和高级索引. 基本切片是 Python 中基本切片概念到 n 维的扩展. 通过将start,stop和step参数提供给内置的slice函数来构造一个 Python slice对象. 此slice对象被传递给数组来提取数组的一部分. 示例 1 import numpy a…
NumPy 切片和索引 ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样. ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组. 实例 import numpy as np a = np.arange(10) s = slice(2,7,2) # 从索引 2 开始到索引 7 停止,间隔为2 print (a[s]…
numpy数组的索引和切片 基本切片操作 >>> import numpy as np >>> arr=np.arange(10) >>> arr array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> arr[5] 5 >>> arr[5:8] array([5, 6, 7]) 切片赋值操作 1.切片赋一个值对应原来数组中的值也会变 >>> arr[5:8]=12 &g…
NumPy 比一般的 Python 序列提供更多的索引方式.除了之前看到的用整数和切片的索引外,数组可以由整数数组索引.布尔索引及花式索引. 1.整数数组索引 1.1 以下实例获取数组中(0,0),(1,1)和(2,0)位置处的元素. import numpy as np x = np.array([[1, 2], [3, 4], [5, 6]]) y = x[[0, 1, 2], [0, 1, 0]] print(y) 输出结果 [1 4 5] 1.2 以下实例获取了 4X3 数组中的四个角的…
布尔值索引 name_arr = np.array(["bob","joe","will","bob","joe","will","joe"]) rnd_arr = np_random.randn(7,4) print(rnd_arr) print(name_arr == "bob") #[ True False False True False…
import numpy as np x = np.array([[1, 2], [3, 4], [5, 6]]) y = x[[0,1,2], [0,1,0]] print (y) import numpy as np x = np.array([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]]) print ('我们的数组是:' ) print (x) print ('\n') rows = np.array([[0,0],[3,3]]) cols…