pointnet++论文的翻译】的更多相关文章

参考: https://blog.csdn.net/weixin_40664094/article/details/83902950 https://blog.csdn.net/pikachu_777/article/details/82993153…
目录 0.论文连接 1.前言 2.论文Abstract翻译 3.论文的主要贡献 4.4 训练 5 模型性能分析 5.1 关于在线挖掘困难样本的性能 5.2 将人脸检测与对齐联合的性能 5.3 人脸检测的效果 6 代码阅读[待更新] 7 感悟&&心得 @ 0.论文连接 点击打开 1.前言 MTCNN是一篇关于人脸检测算法效果很不错的论文,落地效果也很好,据我所知有不少公司在用这个算法做人脸检测. 2.论文Abstract翻译 在无约束环境下,人脸的检测与对齐对于不同的姿势,灯光和遮挡是非常有…
PointNet的缺点: PointNet不捕获由度量空间点引起的局部结构,限制了它识别细粒度图案和泛化到复杂场景的能力. 利用度量空间距离,我们的网络能够通过增加上下文尺度来学习局部特征. 点集通常采用不同的密度进行采样,这导致在统一密度下训练的网络的性能大大降低. 新的集合学习层来自适应地结合多个尺度的特征. 一,介绍: PointNet++:分层方式处理在度量空间中采样的一组点 . 通过基础空间的距离度量将这组点分割成重叠的局部区域. 提取局部特征来捕获来自小邻域的精细几何结构; 这些局部…
前言 wifi的加密协议WPA2已经被破解,影响范围包括所有支持wifi的设备,包括Android,Linux,Apple,Windows,OpenBSD,联发科技,Linksys等.其中对Android和Linux的影响尤其严重,41%的Android设备(Android 6.0及以上)将受到严重影响.介绍这些并非是为了造成恐慌,而是引起我们的重视,在使用wifi时候,我么会经常社交和支付软件的使用,如果这些被破解,造成的损失非常巨大,对于企业更是如此.本文不是对论文,是论文官网对论文介绍的翻…
摘要:         Tachyon是一种分布式文件系统,能够借助集群计算框架使得数据以内存的速度进行共享.当今的缓存技术优化了read过程,可是,write过程由于须要容错机制,就须要通过网络或者是磁盘进行复制操作.Tachyon通过将"血统"技术引入到存储层进而消除了这个瓶颈.创建一个长期的以"血统机制"为基础的存储系统的关键挑战是失败情况发生的时候及时地进行数据恢复.Tachyon通过引入一种检查点的算法来解决问题,这样的方法保证了恢复过程的有限开销以及通过…
*****仅供个人学习记录***** Neural Ordinary Differential Equations[2019] 论文地址:[1806.07366] Neural Ordinary Differential Equations (arxiv.org) 摘要:我们介绍了一个新的深度神经网络模型系列.我们不是指定一个离散的隐藏层序列,而是使用神经网络对隐藏状态的导数进行参数化.网络的输出是用一个黑盒微分方程解算器计算的.这些连续深度模型具有恒定的内存成本,使其评估策略适应每个输入,并且…
摘要 本文研究视频流中未知目标的长期跟踪问题.在第一帧,通过选定位置和大小定义跟踪目标.在接下来的每一帧中,跟踪任务是确定目标的位置和大小或者说明目标不存在.我们提出了一种新颖的跟踪框架(TLD),明确地将长期跟踪任务分解为跟踪.学习和检测.跟踪器完成目标在图像帧间地跟踪.检测器集中到当前为止所有到已经观测到的外观,并在必要时纠正跟踪器.学习阶段估计检测器的误差并更新,避免将来的误差.我们研究怎样识别检测器的误差,并从误差中学习.开发了一种新颖的学习方法(P-N学习),通过一对"专家"…
目录 一. 存在的问题 二. 解决的方案 1.点云特征 2.解决方法 三. 网络结构 四. 理论证明 五.实验效果 1.应用 (1)分类: ModelNet40数据集 (2)部件分割:ShapeNet part数据集 (3)语义分割/检测 2.网络结构分析 (1)针对无序性的解决方法比较 (2)输入和特征对齐的有效性验证 (3)鲁棒性测试(数据缺失.异常值.点扰动) 3.可视化(解释为什么鲁棒性) 4.时间和空间复杂度分析 六.仍存在的问题 七.代码分析 PointNet: Deep Learn…
目录 一. 存在的问题 1.提取局部特征的能力 2.点云密度不均问题 二.解决方案 1.改进特征提取方法: (1)采样层(sampling) (2)分组层(grouping) (3)特征提取层(feature learning) 2.解决点云密度不均问题: (1)多尺度分组(MSG) (2)多分辨率分组(MRG) 三.网络结构 四.实验 4.1欧式度量空间中的点云分类 4.2语义场景标注的点集分割 4.3非欧几里德度量空间中的点集分类 4.4特征可视化 五.总结及存在的问题 六.代码解读 Poi…
Raft 算法是可以用来替代 Paxos 算法的分布式一致性算法,而且 raft 算法比 Paxos 算法更易懂且更容易实现.本文对 raft 论文进行翻译,希望能有助于读者更方便地理解 raft 的思想.如果对 Paxos 算法感兴趣,可以看我的另一篇文章:分布式系列文章--Paxos算法原理与推导 摘要 Raft 是用来管理复制日志(replicated log)的一致性协议.它跟 multi-Paxos 作用相同,效率也相当,但是它的组织结构跟 Paxos 不同.这使得 Raft 比 Pa…
编者按:这篇文章来自简书的一个位博主Jeffbond,读了好几遍,翻译的质量比较高,原文链接:分布式一致性算法:Raft 算法(Raft 论文翻译),版权一切归原译者. 同时,第6部分的集群成员变更读起来还不是很流畅,需要了解这一部分的童鞋可以找下其他的文章看一下. 另外,在转载文章的结尾,我贴了一些Raft算法的相关博文,在以下是转载原文: Raft 算法是可以用来替代 Paxos 算法的分布式一致性算法,而且 raft 算法比 Paxos 算法更易懂且更容易实现.本文对 raft 论文进行翻…
PointNet 论文阅读: 主要思路:输入独立的点云数据,进行变换不变性处理(T-net)后,通过pointNet网络训练后,最后通过最大池化和softMax分类器,输出评分结果. 摘要: 相较于之前其他处理点云数据的论文,将数据转换为三维体素网格或者图象集合,pointNet最大的不同是,对于点云数据,会直接进行处理,而非将点云数据进行格式化处理,从而避免了将点云数据格式化后,产生的unnecessarily voluminous以及像素点失真的问题. 点云的问题: 无序.与图像中的像素阵列…
[译者预读] GFS这三个字母无需过多修饰,<Google File System>的论文也早有译版.但是这不妨碍我们加点批注.重温经典,并结合上篇Haystack的文章,将GFS.TFS.Haystack进行一次全方位的对比,一窥各巨头的架构师们是如何权衡利弊.各取所需. 1. 介绍 我们设计和实现了GFS来满足Google与日俱增的数据处理需求.与传统的分布式文件系统一样,GFS着眼在几个重要的目标,比如性能.可伸缩性.可靠性和可用性.不过它也会优先考虑我们自身应用场景的特征和技术环境,所…
注:博主是大四学生,翻译水平可能比不上研究人员的水平,博主会尽自己的力量为大家翻译这篇论文.翻译结果仅供参考,提供思路,翻译不足的地方博主会标注出来,请大家参照原文,请大家多多关照. 转载请务必注明出处,谢谢. 0. 译者序 题目翻译:基于内容感知生成模型的图像修复 介绍:这篇文章也被称作deepfill v1,作者的后续工作 "Free-Form Image Inpainting with Gated Convolution" 也被称为deepfill v2.两者最主要的区别是,v2…
这篇论文最早是一篇2016年1月16日发表在Sebastian Ruder的博客.本文主要工作是对这篇论文与李宏毅课程相关的核心部分进行翻译. 论文全文翻译: An overview of gradient descent optimization algorithms 梯度下降优化算法概述 0. Abstract 摘要: Gradient descent optimization algorithms, while increasingly popular, are often used as…
前言:本文是我对照原论文逐字逐句翻译而来,英文水平有限,不影响阅读即可.翻译论文的确能很大程度加深我们对文章的理解,但太过耗时,不建议采用.我翻译的另一个目的就是想重拾英文,所以就硬着头皮啃了.本文只作翻译,总结及代码复现详见后续的姊妹篇. Alex原论文链接:https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf 使用深度卷积神经网络进行ImageNet图像分类 作者:A…
文章下载地址:A Surface Defect Detection Method Based on Positive Samples 第一部分  论文中文翻译 摘要:基于机器视觉的表面缺陷检测和分类可以大大提高工业生产的效率.利用足够的已标记图像,基于卷积神经网络的缺陷检测方法已经实现了现有技术的检测效果. 然而在实际应用中,缺陷样本或负样本通常难以预先收集,并且手动标记需要耗费大量时间.本文提出了一种仅基于正样本训练的新型缺陷检测框架. 其检测原理是建立一个重建网络,如果它们存在,可以修复样本…
终于赶在春节前将论文全文翻译完,以后有时间将前面三章重新翻译一次,因为刚开始的时候没打算全文翻译的..第一次每天花25分钟完成这么长的一篇翻译,证明滴水可以穿石,哈哈哈 中文地址:Lua的演进 祝各位新春快乐,鸡年大吉,恭喜恭喜…
MapReduce和区块链有什么相同的地方? 我的天哪,他俩还有相同的地方呢.我书读的少,你别骗我. 他俩还真有相同点,绝不忽悠. 他俩都有一个高大上的名字. 区块链就是一个分布式数据库,并不是什么神秘的东西. MR也一样,只不过是一种分而治之的编程思想.官方的定义是:MapReduce是一个实现了处理和生成大数据集的编程模型. 先说一下我从论文里学到的东西吧: MR的执行过程,知道了MR慢在哪里 怎么容错的,有什么限制 MR与GFS的联系 分片函数怎么玩 怎么样撸代码能让MR跑的更快 MR自己…
[这篇论文我翻译下来,首先感觉还是不好懂,很多地方结论的得出不够清楚,需要读者自己思考其中的原因.要理解Paxos算法,个人建议先搜索下介绍算法的中文文章,大致了解下Paxos算法要做什么,然后就再读下论文,应该会有所感悟.] Paxos Made Simple Leslie Lamport 01 Nov 2001 说明 [说明这部分是我自己加的,下面这几个词大量出现与论文的主体部分,提前了解它们的含义有助于后面对于算法原理和流程的理解.] 议案(proposal):由提议人提出,由审批人进行初…
​ 前言: 目标检测的预测框经过了滑动窗口.selective search.RPN.anchor based等一系列生成方法的发展,到18年开始,开始流行anchor free系列,CornerNet算不上第一篇anchor free的论文,但anchor freee的流行却是从CornerNet开始的,其中体现的一些思想仍值得学习. 看过公众号以往论文解读文章的读者应该能感觉到,以往论文解读中会有不少我自己的话来表述,文章写得也很简练.但这篇论文的写作实在很好,以至于这篇解读文章几乎就是对论…
[转]原博文地址:https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.09.md 完美洗牌算法 题目详情 有个长度为2n的数组{a1,a2,a3,...,an,b1,b2,b3,...,bn},希望排序后{a1,b1,a2,b2,....,an,bn},请考虑有无时间复杂度o(n),空间复杂度0(1)的解法. 题目来源:此题是去年2013年UC的校招笔试题,看似简单,按照题目所要…
两年多以前随手写了点与 lock free 相关的笔记:1,2,3,4,质量都不是很高其实(读者见谅),但两年来陆陆续续竟也有些阅读量了(可见剑走偏锋的技巧是多容易吸引眼球).笔记当中在解决内存释放和 ABA 问题时提到了 Hazard Pointer 这个东西,有两三个读者来信问这是什么,让详细讲一下,我想了想,反正以前在看这东西的时候也记了些东西,干脆整理一下发出来. 前面写的那几篇笔记都来源于 Maged Michael 的学术论文,Hazard pointer 也是他的创想,academ…
第四届CCF大数据学术会议征文通知 2016年10月,兰州 近几年,大数据是各界高度关注积极布局的热点方向.2015年8月,国务院发表<促进大数据发展行动纲要>,正式将大数据提升为国家战略,旨在全面推进我国大数据的发展和应用,加快建设数据强国.现如今大数据不但已成为全球IT行业最强劲的发展动力,而且正在引起各行各业的业务变革与产业升级.因此,为了探讨大数据相关领域所面临的挑战,共享各类创新思想,反映中国大数据技术的最新研究进展,交流大数据的应用现状和研发经验,继2013-2015成功召开了三届…
本文翻译自LMAX关于Disruptor的论文,同时加上一些自己的理解和标注.Disruptor是一个高效的线程间交换数据的基础组件,它使用栅栏(barrier)+序号(Sequencing)机制协调生产者与消费者,从而避免使用锁和CAS,同时还使用缓存行机制(cache line).批处理效应(batch effect),达到高吞吐量和低时延的目标.目前Disruptor版本已经迭代至3.0,本论文是基于Disruptor1.0写就,在新版本中,相对与1.0版本,其核心设计思想没有变,只是实现…
Hans Hoffmann等人在论文<Studies on the Bit Rate Requirements for a HDTV Format With 1920 x 1080 pixel Resolution, Progressive Scanning at 50 Hz Frame Rate Targeting Large Flat Panel Displays>中,研究了HDTV的码率和视频质量之间的关系.在此记录一下论文的内容. 注:论文题目翻译过来意思是<基于大型平板显示器的…
本文是典型分布式系统分析系列的第二篇,关注的是GFS,一个分布式文件存储系统.在前面介绍MapReduce的时候也提到,MapReduce的原始输入文件和最终输出都是存放在GFS上的,GFS保证了数据的可用性与可靠性,那么本文具体看看GFS是怎么做到的. GFS(Google File System)是Google研发的可伸缩.高可用.高可靠的分布式文件系统,提供了类似POSIX的API,按层级目录来组织文件.在网络上,有很多对该轮文的翻译和解读,尤其是经典论文翻译导读之<Google File…
列出一些比较好的学习资料, 可以经常翻一番,加深印象 0 raft官方git 1  raft算法动画演示 2    Raft 为什么是更易理解的分布式一致性算法 3  raft一致性算法 4  Raft算法国际论文全翻译 5 go-raft实现…
0. 背景 谱聚类在2007年前后十分流行,因为它可以快速的通过标准的线性代数库来实现,且十分优于传统的聚类算法,如k-mean等. 至于在任何介绍谱聚类的算法原理上,随便翻开一个博客,都会有较为详细的介绍,如这里.当然这些都来自<A Tutorial on Spectral Clustering>一文.为了上下文一致性和便于理解,我就直接截图别人基于这篇论文中翻译好的部分(偷懒): 1 - 无向权重图:谱聚类是基于图论结构,也是数据结构的毗邻矩阵来实现的,即将所有的点的看成是一个相互连接的图…
cs231n的第18课理解起来很吃力,听后又查了一些资料才算是勉强弄懂,所以这里贴一篇博文(根据自己理解有所修改)和原论文的翻译加深加深理解,其中原论文翻译比博文更容易理解,但是太长,而博文是业者而非学者所著,看着也更舒服一点. 另,本文涉及了反向传播的backpropagation算法,知乎上有个回答很不错,备份到文章里了,为支持原作者,这里给出知乎原文连接 可视化理解卷积神经网络 这张PPT是本节课的核心,下面我来说说这张图. 可视化神经网络的思想就是构建一个逆向的卷积神经网络,但是不包括训…